A. 某商场销售出一批名牌衬衫,平均每天可售出20件,每件盈利44元,为了扩大销售,增加盈利,尽快减少库存,
解:设每件衬衫应降价x元。
(44-x)×(20+5x)=1600
5x2-200x+720=0
x2-40x+140=0
(x-36)(x-4)=0 ←[十字相乘法)
x=36(舍去)
x=4
答:略
B. 某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元.为了扩大销售,增加盈利,商场决定采取适当
(1)设衬衫的单价应下降X元,
由题意得:1200=(20+2x)×(40-x),
解之,得:x=20或10,
∴每天可售出(20+2x)=60或40件;
经检验,x=20或10都符合题意.
∵为了扩大销售,增加盈利,
∴x应取20元.
答:衬衫的单价应下降20元.
(2)w=(40-x)(20+2x)=-2x2+60x+800=-2(x-15)2+1250,
当x=15时,盈利最多为1250元.
C. 某商场出售一批名牌衬衣,衬衣的进价为80元,在营销中发现,该衬衣的日销售量y(件)是日销售价x(元)的
(1)设函数式为y=
k |
x |
k |
100 |
3000 |
x |
3000 |
x |
D. 某商场销售一批名牌衬衫,平均每天可售出20件,每件可盈利40元.为了扩大销售量,增加盈利,尽快减少库存
(1)设每件衬衫应降价x元,则每件盈利40-x元,每天可以售出20+2x,
由题意,得(40-x)(20+2x)=1200,
即:(x-10)(x-20)=0,
解,得x1=10,x2=20,
为了扩大销售量,增加盈利,尽快减少库存,所以x的值应为20,
所以,若商场平均每天要盈利12O0元,每件衬衫应降价20元;
(2)假设能达到,由题意,得(40-x)(20+2x)=1500,
整理,得2x2-60x+700=0,
△=602-2×4×700=3600-4200<0,
即:该方程无解,
所以,商场平均每天盈利不能达到1500元;
(3)设商场平均每天盈利y元,每件衬衫应降价x元,
由题意,得y=(40-x)(20+2x),
=800+80x-20x-2x2,
=-2(x2-30x+225)+450+800,
=-2(x-15)2+1250,
当x=15元时,该函数取得最大值为1250元,
所以,商场平均每天盈利最多1250元,达到最大值时应降价15元.
E. 某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利
1)
设每件衬衫应降价i元。
得
(20+i*2)*(40-i)=1200
解
i=10
答:应降价10元
2)设每件衬衫应降价i元,商场平均每天盈利最多y元。
得
(20+i*2)*(40-i)=y
(20+(i-1)*2)*(40-(i-1))=y-2
解
i=15
答:应降价15元
F. 某商场销售一批名牌衬衫,平均每天可销售20件,每件赢利40元。为了扩大销售,增加赢利,商场决定采取适当
(1)20元;(2)1250元
G. 某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利45元,为了扩大销售、增加盈利,尽快减少库存,商
|