导航:首页 > 帽子知识 > 三个人帽子问题离散数学

三个人帽子问题离散数学

发布时间:2023-08-18 22:41:03

A. 有五顶帽子,其中有三顶白的,两顶黑的。叫三个人来,把他们的眼睛蒙住,把其中三顶给他们带好,在把其他

a看到两顶白色帽子,第一判断无法做出,因此他会想其他人的反应,因为他看到b和c都是白色,所以他假设任何一人的反应均可,这里取b。a假设自己头上是黑色,则b看到的是黑色和白色,这时b会看c的反应,如果b自己头上是黑色则c会第一时间喊出白色,c没有喊,则b会在第二时间喊出白色。由于a知道b和c相同,因此,如果b和c第二时间同时喊出白色,则a知道自己是黑色。事实上并没有两个人先喊白色,因此结论就是自己也是白色,每个人看到的都是两顶白色帽子,所以在第三时间上三个人同时喊出白色。

B. 三顶黑帽子,两顶白帽的推理问题

A=白,B=黑,C=黑。

理由:

1.可以确定三人头上不可能有两顶白帽子.否则不是另一人看见有两顶白帽子,就可以确定自己不是白帽子,而是黑帽子了;

下面在不能有两顶白帽子的前提下进行推导:

2.C不可能是白帽子.假如C为白帽子,因为C的颜色是A和B都可以看到的,B听到A说自己无法判断自己帽子颜色后,B就可以判断出自己不是白色了,而是黑色了,这与题意不符。所以C是黑帽子;

下面在C是黑帽子且没有两顶白帽子的前提下推导:

3.C是黑帽子的情况下,可能是(1)A白B黑,(2)A黑B白,或(3)A黑B黑三种情况,这三种情况中,B黑的时候A有两种情况,B白的时候A只有一种情况,即A黑B白c黑。这样A看到的是一黑一白,无法判断自己帽子的颜色,B看到两顶黑色,也无法判断自己帽子的颜色。C看到的是一黑一白,C想:“如果自己是白色的,A就能看到两顶白色的(B和C帽子的颜色),A就可以判断自己是黑色的了。现在A无法判断,所以自己一定是黑色。”也就是C在听到A的话之后就能判断自己帽子颜色了,而不要等到B说话。这与题中所述不符,所以B也不可能是白的,即B是黑的。

下面在B黑C黑的情况下讨论:

4.剩下两种情况,A白B黑C黑或A黑B黑C黑。从C的角度考虑,C想:“B看到A是黑色的,不管自己是黑是白B都无法判断他自己帽子颜色,所以我也不能从B的话中判断出自己帽子颜色。同时我看到两顶黑色,也无法判断自己帽子颜色,所以我总是判断不出自己帽子的颜色。”这与题中情况不符,所以不可能都是黑色,所以只剩一种情况:A白B黑C黑。

从上可以判断出唯一的可能是A白B黑C黑。

5.下面再来验证一下是不是符合题意,即论证是否是得出题中事实的充分条件:

在A白B黑C黑的情况下,A看到的是两顶黑色,所以无法判断自己帽子的颜色;B看到一黑一白,也无法判断自己帽子的颜色。C看到一白一黑,本来也无法判断自己帽子颜色。但是听了B的话后,C想:“假如自己是白色,B再看到A的白色,那么B看到两顶白色,那B就可以判断自己肯定是黑色了。现在B不能判断,那么自己一定是白色。”这样C就判断出自己帽子的颜色了,与题中所述相符.

所以此题的答案是:A=白,B=黑,C=黑。

推理完毕!

C. 帽子的颜色问题讲的是什么

(1)有三顶红帽子,两顶白帽子,现将其中三顶给排成一列纵队的三人每人戴上一顶,每人都只能看到自己前面的人的帽子,而看不到自己和自己后面人的帽子。从后往前问三人同样的问题:“你戴的帽子是什么颜色?”最后面的人回答说:“不知道。”接着中间的人也说:“不知道。”然而最后回答问题的站在最前面的人却做出了肯定的正确回答。问这个人戴的帽子是什么颜色?回答这个问题需要做正确的逻辑分析。

在提问后,最后面的人回答“不知道”,从中可断定以下事实:

前面两个人中至少有一个戴红色帽子。不然的话,如果前面两人均戴白帽子,而白帽子只有两顶,最后面的人就会知道自己戴红帽子,不会说不知道。这个事实中间的人也可得知,在此基础上他又回答“不知道”,那么一定是最前面的人戴着红帽子。不然的话,最前面的人若戴白帽子,因他与中间的人两人中至少有一个戴红帽子,那中间的人就一定戴红帽子了,中间的人也不会说不知道。于是,最前面的人戴红色帽子是正确结论。

在这个帽子的颜色问题中,戴着帽子回答问题的三个人应是聪明人,都能正确地进行逻辑推理,并作出正确的判断。如果有一个智力有问题,或胡乱猜测随便回答,那么整个事情就无法正确解释了。

此问题是一个传统的逻辑推理问题,人们经常利用这样的问题考察智力,既要看会不会推理,又要看整个推理过程是不是简明,还要看推理用的时间。在一个好的问题面前,可以充分显示人的思维能力。

中国著名数学家华罗庚对上述帽子的颜色问题作了改造,提出下面的问题:

(2)一位老师让三位聪明的学生看了一下事先准备好的五顶帽子:三顶白色的,两顶黑色的。然后让他们闭上眼睛,他替每个学生戴上一顶帽子,并把其余两顶藏起来,让学生睁开眼睛后各自说出自己戴的帽子的颜色。三人睁眼互相看了一下,踌躇了一会儿,觉得为难。继而异口同声地说自己头上戴的是白帽子。问他们是怎样推演出来的?先看戴帽情况,有两黑一白、两白一黑、三白共三种情况。

若第一种情况,戴白帽子的学生一看便能说出自己戴的帽子颜色,而实际上三人睁眼互相看了一下,踌躇了一会儿,没一人马上说出,这表明这种情况是不符合现实。

这样三人都明白其中至多只有一人戴黑帽子,如果有一人戴黑帽子,另外两人必会立刻说出自己戴着白色帽子,而不会踌躇且觉得为难。三人均为难说明谁也没有看见有人戴黑色帽子。那么三人戴的都是白色帽子。于是三位聪明学生便异口同声说出自己戴的帽子的颜色。

这个问题初看似乎感到条件不足,然而细一琢磨,“踌躇了一会儿,觉得为难,继后异口同声地说”里面涵义丰富,奥妙无穷。建立在这条件上,便可展开如上推理,层层深入,环环紧扣。

华罗庚推出这一改编的问题,让人深深体会到了数学大师的内在功力,其中表现出高超的思维技巧。

如果把人数增多,还可提出类似的问题:

(3)四个爱动脑筋的小朋友接受老师的智力测验,看谁能最快最准确地回答问题。老师让他们都闭上眼睛,给他们每人戴上一顶帽子,或者是白的,或者是蓝的。然后让他们睁开眼睛,告诉他们:“谁看到的白帽比蓝帽多就马上举手。然后各位说出自己戴的帽子颜色。”大伙互相看了一下(每个人都看不见自己戴的帽子,但能看清别人戴的帽子),谁也没举手,过了一会儿,也没有人说出自己戴的帽子颜色,其中一个叫小光的学生见大家都不说话,就猜出了自己头顶上的帽子颜色。问小光戴的是什么样的帽子。

再来分情况考虑。

如果恰有两个人戴白色帽子,另外两人都会看到两顶白帽,一顶蓝帽。他俩会同时举起手,而实际上无人举手,这表明在四个学生中最多只有一人戴白帽子。

如果只有一个学生戴白帽子,另外三人都会看到一顶白帽,两顶蓝帽,谁也不会举手。戴白帽子的人看到的是三顶蓝帽,也不会举手。三个戴蓝帽的人会想到:“我已看到一顶白帽子,如果我戴的也是白帽,就会有两人举手,而事实上没有举手,说明我戴的是蓝帽。”

可是,仍然没有人举手,这就说明一顶白帽也没有。四人戴的都是蓝帽子。

D. 三个人站成一列,每人只能看到前面人戴的帽子

根据后面的人的回答可知:前面两人不都戴白帽子,即一白一红或两红;中间的人由最后的人的回答,推出前两人不都戴白帽子,但是根据中间的人回答不知道,所以前面的人一定戴红帽子;
答:前面的人一定戴红帽子.

E. 1.三个人A、B、C抽取三顶帽子A、B、C,都不配对的概率是多少 (请列出所有的可能)

1, BCA,CAB 共2种,概率是2/6=1/3
2,这题要反过来求,求5人中有N人及以上戴着自己的帽子的概率是PN
那么 有1人以上戴着自己的帽子的概率是
P=P1-P2+P3-P4+P5
=(5*4*3*2*1-10*3*2*1+10*2*1-5*1)/ 5*4*3*2*1
=5/8
所有人都不戴自己的帽子的概率就是 3/8

F. 有3顶黑帽子,2顶白帽子。让三个人从前到后站成一排,给他们每个人头上戴一顶帽子。每个人都看不见自己戴

如果前面戴的都是白帽子,则最后一人就知道自己戴的是黑帽子。若最后一人回答不知道,则前面两人戴的都是黑帽子或一人白帽子一人黑帽子;此时,若最前面的人戴的是白帽子,则中间的人就知道自己戴的是黑帽子;若中间的人回答不知道,则最前面的人戴的是黑帽子。

分析与综合

分析:分析是把事物分解为各个部分、侧面、属性,分别加以研究。是认识事物整体的必要阶段。

综合:综合是把事物各个部分、侧面、属性按内在联系有机地统一为整体,以掌握事物的本质和规律。

分析与综合是互相渗透和转化的,在分析基础上综合,在综合指导下分析。分析与综合,循环往复,推动认识的深化和发展。

事例:在光的研究中,人们分析了光的直线传播、反射、折射,认为光是微粒,人们又分析研究光的干涉、衍射现象和其他一些微粒说不能解释的现象,认为光是波。当人们测出了各种光的波长,提出了光的电磁理论,似乎光就是一种波,一种电磁波。

但是,光电效应的发现又是波动说无法解释的,又提出了光子说。当人们把这些方面综合起来以后,一个新的认识产生了:光具有波粒二象性。

G. 同事出了个推理题,觉得蛮有意思,分享给大家:有5顶帽子,3黑2白。三个聪明人戴

1.首先考虑,如果两个人都戴黑帽子,而自己戴白帽子机率最大,首先想到的是自己戴白帽子.如果他喊出白帽子,就等于告诉了对方答案.所以三人都考虑了很久,等待对方作答,这只能说明他们全戴黑帽子.. 2.同上,乙和丙报出了自己可能是白帽子,告知了甲肯定了答案..

H. 有一天,国王让A、B、C三个囚犯来到王宫。国王想了一个办法,给他们每个人头上都戴了一顶帽子,只让他们知

如果A看到B和C带的都是黑帽子,而自己猜想一下,自己带的是白帽子,那么C就应该看到A是白的,B是黑的,而B没有要求释放释放就是因为C带的是黑的,所以没有同时看见两个囚犯带着白帽子。
其次C如果看到A带的是白的,B是黑的,而B没有要求释放就可以推理出自己带的不是白的,是黑的,所以应该要求被释放,但是没有要求就证明A带的是黑的,C无法断定自己带的是什么颜色。
所以A就知道了自己带的是黑帽子。

与三个人帽子问题离散数学相关的资料

热点内容
长款马甲搭配长款蚂蚁还是短款 浏览:548
小猫狗女装 浏览:134
衬衫外套短裤和雨靴的英文雨靴的英文 浏览:498
如何把帽子改衣领 浏览:190
运动品牌有什么好看的羊羔外套 浏览:412
蓝大衣搭配什么颜色裙子 浏览:277
好看的牛仔裤淘宝 浏览:251
真丝红色外套宽松上衣图片及价格 浏览:316
浙江羽绒服美国大卖 浏览:320
小和尚被扒裤子 浏览:773
短靴裤子 浏览:158
烘干机烘衣要调多少钱 浏览:14
买帽子英文怎么说 浏览:663
淮南女装店出租 浏览:324
帽子有多少类 浏览:218
情侣装怎么在拼多多 浏览:207
西瓜宝宝衣编织视频 浏览:997
时尚大码女装批发拿货 浏览:261
超短旗袍美女跟男人 浏览:885
东航的制服有风衣吗 浏览:419