导航:首页 > 服装知识 > 阶梯猜帽子颜色的智力题

阶梯猜帽子颜色的智力题

发布时间:2023-06-14 04:06:29

㈠ 推理游戏,答案是前两个人戴红帽子,后一个人戴黑帽子,问题看下面

一共有4种情况如下
3个黑帽子:不符合至少1个红帽子
2个黑帽子1个红帽子:红帽子视野中有2黑,于是他会立马想到规则至少1个红帽子,从而反应过来自己是红帽子,此种情况红帽子先宣布自己帽子颜色,2个黑帽子随后宣布。
1个黑帽子2个红帽子:红帽子视野中有1红1黑,他会想:如果我是戴的黑帽子,那另一个戴红帽子的人会参考第2种情况反应过来自己是戴的红帽子,但是他没有说话,所以我戴的一定是红帽子,此种情况2个红帽子的同时宣布自己帽子颜色,黑帽子随后宣布。
3个红帽子:红帽子视野中有2红,他会想:如果我戴的是黑帽子,那两个戴红帽子的人会参考第3种情况反应过来自己戴的是红帽子,但是他没有说话,所以我戴的一定是红帽子,此种情况3人同时宣布自己帽子颜色。
综上,第2种第3种和第4种是可以宣布自己帽子颜色的,但是依据题干所说大家宣布的顺序,所以排除第2种和第4种情况,是第3种:1黑2红

㈡ A、B、C、D四人谁先知道自己帽子颜色

首先,我们从站在最高的D开始推理
D看到1个黑色和1个白色,所以他无法知道自己是黑的还是白的,他猜不出来
C等了一段时间,发现D没有猜出来,说明C和B颜色不同,(每种颜色2个,所以如果B和C相同,D立刻就能猜出自己的颜色)。所以C知道了自己和B相反,是黑色,第一个猜出来。

㈢ 智力题 猜帽子

答案:

1、只有前面两个人的帽子是:一白一黑或全黑,第三个人才不知道自己戴的是什么
2、前面两个人的帽子是:一白一黑,如果第一个是白的,第二个人就会知道自己是黑的。
3、后两个人不知道自己什么帽子,第一个人就知道自己是黑的帽子。

㈣ 经典智力题——帽子颜色问题

若第三个人知道他戴的帽子,那么就只有一种可能性:前面两个人戴的是白帽子,他是黑帽子。这样第二个人也就知道他戴了白的,第三个人也就知道了。
但是如果第一个人不知道,那么前面两个人中至少有一人是黑帽子,此时如果第二个人知道,那就只有一种可能:第一个人是白帽子,他是黑帽子。
实际上第二个人不知道他自己是什么帽子,那么他肯定是看到了前面的人戴的是黑帽子。(因为他和第一个人中肯定有一个人戴的是黑帽子,若第一个人是白色的,那他肯定是黑色的,但是第一个人如果是黑色的,那他就不知道他是什么颜色的了)
这样听到后面两个人的回答都是:不知道的时候,第一个人就能猜出他戴的是黑帽子了
三人从后到前表示为:3,2,1
若3知, 则:3(黑),2(白),1(白)

若3不知,则:3( ),2(白),1(黑)
3( ),2(黑),1(白)
3( ),2(黑),1(黑)

若3不知而2知,则只有一种情况:
3( ),2(黑),1(白)
但是若3不知而2也不知,就有下面两种情况:
3( ),2(白),1(黑)
3( ),2(黑),1(黑)
不论以上两种中的那种情况第一个人都可以得出结论:
他戴的是黑色的帽子,三人全是黑帽子只是其中的一个可能性而已。

㈤ 确认帽子颜色的智力题怎么做 求高手

一群人玩一个智力游戏。每个人头上有一顶帽子(分绿蓝两种颜色,蓝色有若干顶,绿色至少有一顶)大家都可以看到他人的帽子,但却看不到自己的,主持人让大家站在一起,说“如果你们肯定自己的头上不是蓝帽子,就拍手!(没人拍手)他又问了一次,(还是没人拍),他接着又问,就响起了拍手声。请问有几个人带了绿帽子。
呵呵,自以为自己戴绿帽子了,其实只有主持人一个人戴绿帽子。

㈥ 在一房间里有4个小孩,2个戴黑帽子。

A,在别人没猜之后,不可能猜中,因为他什么都看不见。
B,在别人没猜之后,不可能猜中,因为他也什么都看不见。
如果B和C戴同样颜色的帽子,那么D一定能猜中自己帽子的颜色。
如果B和C戴不同颜色的帽子,那么D一定不能猜中自己帽子的颜色。

这个题目的题意明显有问题,因为4个小孩怎么猜?是用嘴说吗?如果一个小孩用嘴说,评判人回答有没有猜中,那么其他3个小孩根据听到的话,也可能猜中自己帽子的颜色。如果4个小孩,只是把自己猜的答案写在纸上,同时交给评判人,那么除了D把握性大一些之外,其他3人都是乱猜的呀。

帽子只有两种颜色,任何人猜,都有50%的命中率呀。

如果是说出来,那么我想是这样的:由于沉默片刻,说明D犹豫了一下,C根据D的犹豫,判断出自己帽子的颜色跟B不同,所以C第一个猜中了,紧接着B,由于听到C猜中的结果,又根据D的表现,只要说一下相反的颜色,就可以猜中,所以B第二个猜中了。而A和D,谁第三个猜,谁都可能猜错,而最后一个猜的人,也轻松的猜中了。

如果评判人说,如果你觉得能猜中,就请你大声说你能猜中,但不要说出猜中结果,只要把结果写在一张纸上,给我看,就行了。如果这样,C猜中后,B就要乱猜了。

但是也不能认为C就是有根据的猜,因为按照题意,沉默片刻,难道D就不能故意这样的表现吗?D如果一眼就能猜中,而他一说能猜中,那么紧接着C就能猜中,这是不说出猜中结果的情况,如果D说出猜中结果,被ABC听到了,那么他们三人也很快能猜中了。D完全可以故意,表现不那么急着猜,沉默片刻呀。

既然是有意识的猜,为什么D就那么傻,如果能一眼猜中,就不能沉默片刻了吗?如果D一眼猜不中,为什么就要沉默片刻呢,就不能故意表现出很快猜中的样子吗?

这个题目,也太小儿科了吧,也太没什么意义了吧。设置的条件,让A和B,如何猜,完全有利于C和D嘛。沉默片刻,就说明人家猜不中吗?没听过兵不厌诈吗?难道D不可以故意第一个胡乱的说猜中,以干扰C作判断吗?

㈦ 智力题:智辨帽色

如果丙看到了两顶黑帽,则他马上可以肯定他自己头上戴的必是红帽,因为黑帽只有两顶.可是由于丙判断不了,从而可以推知,他看到的情况必是两顶红帽或一红一黑.若乙看到的是一顶黑帽,则在上述推理的基础上即可判定他所戴的乃是红帽,可是他说他也不知道头上帽子的颜色;由此可以判定乙所看到的,甲头上所戴的乃是红帽.于是,甲可顺理成章地(即使他是色盲患者,甚至真正的瞎子也没有关系)判定:他头上戴的必是一顶红帽子.

㈧ 智力题:猜帽子的颜色

D能看见BC的帽子,C能看见B的帽子。因为按同一方向坐,如果D先说勒自己帽子的颜色,就证明BC帽子的颜色是一样。 如果没说的话,就知道C和B的帽子颜色不一样,而B的帽子是黄色,显然C的帽子是红色。当C说出答案后B自然就知道自己的帽子的颜色,这样就解开了。

㈨ 帽子定生死 智力题

至少9个
先是这样的,前面9个人的帽子颜色,要么红色是单数,要么蓝是单数
如果红色是单数,那么蓝色就是双数,如果红色是双数,那么蓝色就是单数
所以,最后一个人看到前9个人帽子的颜色,如果红色是单数,就说自己是红色,如果蓝色是单数就说自己是蓝色,这样最后一个就有50%的机会存活,而第9个人,就能从最后一个人说的颜色判断自己帽子的颜色,同样的第8个人就能根据第9个人和最后一个的回答知道自己帽子的颜色
同理,前面9个人都会知道自己帽子的颜色
也就是说,至少存活9个人

㈩ 10人站成一列,一人一个帽子,两种颜色共10个,每人只能看到前面人的帽子,从最后一人依次往前问所戴帽子的

一共3红4黑5白,第十个人不知道的话,可推出前9个人的所有可能情况:
红 黑 白
3 3 3
3 2 4
3 1 5
2 3 4
2 2 5
1 3 5
如果第九个人不知道的话,可推出前8个人的所有可能情况:
红 黑 白
1 2 5
1 3 4
2 1 5
2 2 4
2 3 3
3 1 4
3 2 3
由此类推可知,当推倒第六个人时,会发现他已经肯定知道他自己戴的是什么颜色的帽子了.

“有3顶黑帽子,2顶白帽子。让三个人从前到后站成一排,给他们每个人头上戴一顶帽子。每个人都看不见自己戴的帽子的颜色,却只能看见站在前面那些人的帽子颜色。(所以最后一个人可以看见前面两个人头上帽子的颜色,中间那个人看得见前面那个人的帽子颜色但看不见在他后面那个人的帽子颜色,而最前面那个人谁的帽子都看不见。现在从最后那个人开始,问他是不是知道自己戴的帽子颜色,如果他回答说不知道,就继续问他前面那个人。事实上他们三个戴的都是黑帽子,那么最前面那个人一定会知道自己戴的是黑帽子。为什么?”
答案是,最前面的那个人听见后面两个人都说了“不知道”,他假设自己戴的是白帽子,于是中间那个人就看见他戴的白帽子。那么中间那个人会作如下推理:“假设我戴了白帽子,那么最后那个人就会看见前面两顶白帽子,但总共只有两顶白帽子,他就应该明白他自己戴的是黑帽子,现在他说不知道,就说明我戴了白帽子这个假定是错的,所以我戴了黑帽子。”问题是中间那人也说不知道,所以最前面那个人知道自己戴白帽子的假定是错的,所以他推断出自己戴了黑帽子。
我们把这个问题推广成如下的形式:
“有若干种颜色的帽子,每种若干顶。假设有若干个人从前到后站成一排,给他们每个人头上戴一顶帽子。每个人都看不见自己戴的帽子的颜色,而且每个人都看得见在他前面所有人头上帽子的颜色,却看不见在他后面任何人头上帽子的颜色。现在从最后那个人开始,
问他是不是知道自己戴的帽子颜色,如果他回答说不知道,就继续问他前面那个人。一直往前问,那么一定有一个人知道自己所戴的帽子颜色。”
当然要假设一些条件:
1)首先,帽子的总数一定要大于人数,否则帽子都不够戴。
2)“有若干种颜色的帽子,每种若干顶,有若干人”这个信息是队列中所有人都事先知道的,而且所有人都知道所有人都知道此事,所有人都知道所有人都知道所有人都知道此事,等等等等。但在这个条件中的“若干”不一定非要具体一一给出数字来。
这个信息具体地可以是象上面经典的形式,列举出每种颜色帽子的数目“有3顶黑帽子,2顶白帽子,3个人”,也可以是“有红黄绿三种颜色的帽子各1顶2顶3顶,但具体不知道哪种颜色是几顶,有6个人”,甚至连具体人数也可以不知道,“有不知多少人排成一排,有黑白两种帽子,每种帽子的数目都比人数少1”,这时候那个排在最后的人并不知道自己排在最后——直到开始问他时发现在他回答前没有别人被问到,他才知道他在最后。在这个帖子接下去的部分当我出题的时候我将只写出“有若干种颜色的帽子,每种若干顶,有若干人”这个预设条件,因为这部分确定了,题目也就确定了。
3)剩下的没有戴在大家头上的帽子当然都被藏起来了,队伍里的人谁都不知道都剩下些什么帽子。
4)所有人都不是色盲,不但不是,而且只要两种颜色不同,他们就能分别出来。当然他们的视力也很好,能看到前方任意远的地方。他们极其聪明,逻辑推理是极好的。总而言之,只要理论上根据逻辑推导得出来,他们就一定推导得出来。相反地如果他们推不出自己头上帽子的颜色,任何人都不会试图去猜或者作弊偷看——不知为不知。
5)后面的人不能和前面的人说悄悄话或者打暗号。
当然,不是所有的预设条件都能给出一个合理的题目。比如有99顶黑帽子,99顶白帽子,2个人,无论怎么戴,都不可能有人知道自己头上帽子的颜色。另外,只要不是只有一种颜色的帽子,在只由一个人组成的队伍里,这个人也是不可能说出自己帽子的颜色的。
但是下面这几题是合理的题目:
1)3顶红帽子,4顶黑帽子,5顶白帽子,10个人。
2)3顶红帽子,4顶黑帽子,5顶白帽子,8个人。
3)n顶黑帽子,n-1顶白帽子,n个人(n>0)。
4)1顶颜色1的帽子,2顶颜色2的帽子,……,99顶颜色99的帽子,100顶颜色100的帽子,共5000个人。
5)有红黄绿三种颜色的帽子各1顶2顶3顶,但具体不知道哪种颜色是几顶,有6个人。
6)有不知多少人(至少两人)排成一排,有黑白两种帽子,每种帽子的数目都比人数少1。
大家可以先不看我下面的分析,试着做做这几题。
如果按照上面3顶黑帽2顶白帽时的推理方法去做,那么10个人就可以把我们累死,别说5000个人了。但是3)中的n是个抽象的数,考虑一下怎么解决这个问题,对解决一般的问题大有好处。
假设现在n个人都已经戴好了帽子,问排在最后的那一个人他头上的帽子是什么颜色,什么时候他会回答“知道”?很显然,只有在他看见前面n-1个人都戴着白帽时才可能,因为这时所有的n-1顶白帽都已用光,在他自己的脑袋上只能顶着黑帽子,只要前面有一顶黑帽子,那么他就无法排除自己头上是黑帽子的可能——即使他看见前面所有人都是黑帽,他还是有可能戴着第n顶黑帽。
现在假设最后那个人的回答是“不知道”,那么轮到问倒数第二人。根据最后面那位的回答,他能推断出什么呢?如果他看见的都是白帽,那么他立刻可以推断出自己戴的是黑帽——要是他也戴着白帽,那么最后那人应该看见一片白帽,问到他时他就该回答“知道”了。但是如果倒数第二人看见前面至少有一顶黑帽,他就无法作出判断——他有可能戴着白帽,但是他前面的那些黑帽使得最后那人无法回答“知道”;他自然也有可能戴着黑帽。
这样的推理可以继续下去,但是我们已经看出了苗头。最后那个人可以回答“知道”当且仅当他看见的全是白帽,所以他回答“不知道”当且仅当他至少看见了一顶黑帽。这就是所有帽子颜色问题的关键!
如果最后一个人回答“不知道”,那么他至少看见了一顶黑帽,所以如果倒数第二人看见的都是白帽,那么最后那个人看见的至少一顶黑帽在哪里呢?不会在别处,只能在倒数第二人自己的头上。这样的推理继续下去,对于队列中的每一个人来说就成了:
“在我后面的所有人都看见了至少一顶黑帽,否则的话他们就会按照相同的判断断定自己戴的是黑帽,所以如果我看见前面的人戴的全是白帽的话,我头上一定戴着我身后那个人看见的那顶黑帽。”
我们知道最前面的那个人什么帽子都看不见,就不用说看见黑帽了,所以如果他身后的所有人都回答说“不知道”,那么按照上面的推理,他可以确定自己戴的是黑帽,因为他身后的人必定看见了一顶黑帽——只能是第一个人他自己头上的那顶。事实上很明显,第一个说出自己头上是什么颜色帽子的那个人,就是从队首数起的第一个戴黑帽子的人,也就是那个从队尾数起第一个看见前面所有人都戴白帽子的人。
这样的推理也许让人觉得有点循环论证的味道,因为上面那段推理中包含了“如果别人也使用相同的推理”这样的意思,在逻辑上这样的自指式命题有点危险。但是其实这里没有循环论证,这是类似数学归纳法的推理,每个人的推理都建立在他后面那些人的推理上,而对于最后一个人来说,他的身后没有人,所以他的推理不依赖于其他人的推理就可以成立,是归纳中的第一个推理。稍微思考一下,我们就可以把上面的论证改得适合于任何多种颜色的推论:
“如果我们可以从假设断定某种颜色的帽子一定会在队列中出现,从队尾数起第一个看不见这种颜色的帽子的人就立刻可以根据和此论证相同的论证来作出判断,他戴的是这种颜色的帽子。现在所有我身后的人都回答不知道,所以我身后的人也看见了此种颜色的帽子。如果在我前面我见不到此颜色的帽子,那么一定是我戴着这种颜色的帽子。”
当然第一个人的初始推理相当简单:“队列中一定有人戴这种颜色的帽子,现在我看不见前面有人戴这颜色的帽子,那它只能是戴在我的头上了。”
对于题1)事情就变得很明显,3顶红帽子,4顶黑帽子,5顶白帽子给10个人戴,队列中每种颜色至少都该有一顶,于是从队尾数起第一个看不见某种颜色的帽子的人就能够断定他自己戴着这种颜色的帽子,通过这点我们也可以看到,最多问到从队首数起的第三人时,就应该有人回答“知道”了,因为从队首数起的第三人最多只能看见两顶帽子,所以最多看见两种颜色,如果他后面的人都回答“不知道”,那么他前面一定有两种颜色的帽子,而他头上戴的一定是他看不见的那种颜色的帽子。
题2)也一样,3顶红帽子,4顶黑帽子,5顶白帽子给8个人戴,那么队列中一定至少有一顶白帽子,因为其它颜色加起来一共才7顶,所以队列中一定会有人回答“知道”。
题4)的规模大了一点,但是道理和2)完全一样。100种颜色的5050顶帽子给5000人戴,前面99种颜色的帽子数量是1 …… 99=4950,所以队列中一定有第100种颜色的帽子(至少有50顶),所以如果自己身后的人都回答“不知道”,那么那个看不见颜色100帽子的人就可以断定自己戴着这种颜色的帽子。
至于5)、6)“有红黄绿三种颜色的帽子各1顶2顶3顶,但具体不知道哪种颜色是几顶,有6个人”以及“有不知多少人排成一排,有黑白两种帽子,每种帽子的数目都比人数少1”,原理完全相同,我就不具体分析了。
最后要指出的一点是,上面我们只是论证了,如果我们可以根据各种颜色帽子的数量和队列中的人数判断出在队列中至少有一顶某种颜色的帽子,那么一定有一人可以判断出自己头上的帽子的颜色。因为如果所有身后的人都回答“不知道”的话,那个从队尾数起第一个看不见这种颜色的帽子的人就可以判断自己戴了此颜色的帽子。但是这并不是说在询问中一定是由他来回答“知道”的,因为还可能有其他的方法来判断自己头上帽子的颜色。比如说在题2)中,如果队列如下:(箭头表示队列中人脸朝的方向)
白白黑黑黑黑红红红白→
那么在队尾第一人就立刻可以回答他头上的是白帽,因为他看见了所有的3顶红帽子和4顶黑帽子,能留给他自己戴的只能是白帽子了

与阶梯猜帽子颜色的智力题相关的资料

热点内容
男士风衣内部搭配 浏览:830
史密斯夫妇风衣 浏览:73
女生黑色棒球外套搭配图片 浏览:372
男生灰外套怎么搭配 浏览:907
校服颜色掉怎么办 浏览:292
冰条线织什么样的围巾好看呢 浏览:556
男士个性内裤奇葩型 浏览:801
手机帽子怎么做 浏览:799
冬天的厚睡衣可以干洗吗 浏览:858
男韩版风衣配什么裤子好看 浏览:38
1米65穿多少码的裤子 浏览:707
男九分花裤子搭什么鞋 浏览:989
皮卡丘睡衣图片男 浏览:434
睡袍尺寸与睡衣区别 浏览:143
想开个女装店叫什么名字好呢 浏览:810
外套女装薄款 浏览:26
白色羽绒服染到黑色怎么办 浏览:569
非主流是也有个男装品牌么 浏览:994
小孩有睡衣 浏览:351
王者荣耀亚瑟出帽子有用吗 浏览:809