㈠ 我國一位數學家的問題:一共有5個帽子,其中有3個帽子是黑的,2個是白的。把3個黑帽子分別戴在3個人
如果我是帶的白的,那就會剩下一白三黑。還有兩個人如果一個人帶白的那另一個會迅速說出自己帶的是黑的,但事實上三個人都在猶豫。那說明我是黑的,導致剩下二黑二白這樣就無法立即判斷出來自己的顏色了。而三人都這樣考慮都猶豫他們就會想到是自己為黑的導致無法立即判斷。
㈡ 奧數題呵```誰會做```
如果一個人看到其他兩個人戴黑色帽子 就能立即知道自己戴的是白色帽子
但是沒有人立刻喊出來 所以戴黑色帽子的人少於2名
即 有1個黑色帽子2個白色帽子 或者3個白色帽子
再假設3個人都戴白色帽子 這樣每個人都看到2個白色帽子 誰也猜不出來
所以3個人有1個黑色帽子2個白色帽子
這時 其中2個人看到的是1黑1白 剩下1個人看到的是2白
看到1黑1白的人不知道自己頭上的帽子什麼顏色
如果是黑的 則剩下的會有1個人看到2黑 他會喊出自己的是白帽子
可是沒有人立刻喊出來
所以自己的是白帽子 他就喊出來了
而另外也看到1黑1白的人想到同樣的道理 也喊出來
看到2白的人也就確定了 自己戴的是黑帽子 因為如果自己也是白的 其他人是無法判斷出來的
㈢ IQ題:一群人開舞會,每人頭上都戴著一頂帽子。帽子只有黑白兩種,黑的至少有一頂。每個人都能看到其他人
3個
這是道典型的邏輯題,奧妙就在你得作個假設。假如只有一個人戴黑帽子,那他看到所有人都戴白帽,在第一次關燈時就應打耳光,所以應該不止一個人戴黑帽子;如果有兩頂黑帽子,第一次兩人都只看到對方頭上的黑帽子,不敢確定自己的顏色,但到第二次關燈,這兩人應該明白,如果自己戴著白帽,那對方早在上一次就應打耳光了,因此自己戴的也是黑帽子―――於是也會有兩個人打耳光;可事實是第三次才響起打耳光聲,說明全場有三頂黑帽,依此類推,應該是關幾次燈,有幾頂黑帽。
㈣ 華羅庚退步解題方法 ,就是三個學生戴帽子,三頂白帽子,兩頂黑帽子
排除法:
這道題的條件有兩個
1,猶豫前一會兒
2,猶豫後一會兒
答案只有三個可能
1三白,
2一白兩黑
3兩白一黑
通過猶豫前一會兒排除2,因為肯定有個白的先說,不會猶豫
通過猶豫後一會兒排除3,如果有個黑的,那麼兩個白的就會根據不會有兩個黑的說出自己是白的,
總而言之,對於神童來說猶豫這么久意味著無法確定,神童之間明白大家都無法確定,而三白就是唯一無法確定的情況.也就是唯一的情況.
㈤ 經典邏輯題:黑白帽子
若第三個人知道他戴的帽子,那麼就只有一種可能性:前面兩個人戴的是白帽子,他是黑帽子。這樣第二個人也就知道他戴了白的,第三個人也就知道了。
但是如果第一個人不知道,那麼前面兩個人中至少有一人是黑帽子,此時如果第二個人知道,那就只有一種可能:第一個人是白帽子,他是黑帽子。
實際上第二個人不知道他自己是什麼帽子,那麼他肯定是看到了前面的人戴的是黑帽子。(因為他和第一個人中肯定有一個人戴的是黑帽子,若第一個人是白色的,那他肯定是黑色的,但是第一個人如果是黑色的,那他就不知道他是什麼顏色的了)
這樣聽到後面兩個人的回答都是:不知道的時候,第一個人就能猜出他戴的是黑帽子了
三人從後到前表示為:3,2,1
若3知, 則:3(黑),2(白),1(白)
若3不知,則:3( ),2(白),1(黑)
3( ),2(黑),1(白)
3( ),2(黑),1(黑)
若3不知而2知,則只有一種情況:
3( ),2(黑),1(白)
但是若3不知而2也不知,就有下面兩種情況:
3( ),2(白),1(黑)
3( ),2(黑),1(黑)
不論以上兩種中的那種情況第一個人都可以得出結論:
他戴的是黑色的帽子,三人全是黑帽子只是其中的一個可能性而已。
㈥ 三頂黑帽子,兩頂白帽的推理問題
A=白,B=黑,C=黑。
理由:
1.可以確定三人頭上不可能有兩頂白帽子.否則不是另一人看見有兩頂白帽子,就可以確定自己不是白帽子,而是黑帽子了;
下面在不能有兩頂白帽子的前提下進行推導:
2.C不可能是白帽子.假如C為白帽子,因為C的顏色是A和B都可以看到的,B聽到A說自己無法判斷自己帽子顏色後,B就可以判斷出自己不是白色了,而是黑色了,這與題意不符。所以C是黑帽子;
下面在C是黑帽子且沒有兩頂白帽子的前提下推導:
3.C是黑帽子的情況下,可能是(1)A白B黑,(2)A黑B白,或(3)A黑B黑三種情況,這三種情況中,B黑的時候A有兩種情況,B白的時候A只有一種情況,即A黑B白c黑。這樣A看到的是一黑一白,無法判斷自己帽子的顏色,B看到兩頂黑色,也無法判斷自己帽子的顏色。C看到的是一黑一白,C想:「如果自己是白色的,A就能看到兩頂白色的(B和C帽子的顏色),A就可以判斷自己是黑色的了。現在A無法判斷,所以自己一定是黑色。」也就是C在聽到A的話之後就能判斷自己帽子顏色了,而不要等到B說話。這與題中所述不符,所以B也不可能是白的,即B是黑的。
下面在B黑C黑的情況下討論:
4.剩下兩種情況,A白B黑C黑或A黑B黑C黑。從C的角度考慮,C想:「B看到A是黑色的,不管自己是黑是白B都無法判斷他自己帽子顏色,所以我也不能從B的話中判斷出自己帽子顏色。同時我看到兩頂黑色,也無法判斷自己帽子顏色,所以我總是判斷不出自己帽子的顏色。」這與題中情況不符,所以不可能都是黑色,所以只剩一種情況:A白B黑C黑。
從上可以判斷出唯一的可能是A白B黑C黑。
5.下面再來驗證一下是不是符合題意,即論證是否是得出題中事實的充分條件:
在A白B黑C黑的情況下,A看到的是兩頂黑色,所以無法判斷自己帽子的顏色;B看到一黑一白,也無法判斷自己帽子的顏色。C看到一白一黑,本來也無法判斷自己帽子顏色。但是聽了B的話後,C想:「假如自己是白色,B再看到A的白色,那麼B看到兩頂白色,那B就可以判斷自己肯定是黑色了。現在B不能判斷,那麼自己一定是白色。」這樣C就判斷出自己帽子的顏色了,與題中所述相符.
所以此題的答案是:A=白,B=黑,C=黑。
推理完畢!
㈦ 一道超難的奧數題,有識之士都來呀
樓主題出錯了吧,主持人開燈,應該是讓大家看別人頭頂上的帽子顏色吧
如果是這樣,答案如下:
假設
有兩個人戴黑帽子的話
第一次開燈,兩個戴黑帽子的人都看到了1頂黑帽子,
關燈,他們以為就只有1頂黑帽子,自己可能是白帽子,所以,不打耳光。但也沒有聽到他們看到的那個帶黑帽子的人打耳光。所以,推斷,肯定不止一頂黑帽子。而別人都是白帽子,所以,自己必定也是黑帽子。
所以,再一次關燈時,帶黑帽子的人知道了自己是黑帽子,打耳光。
三個人帶黑帽子的話
第一次開燈,戴黑帽子的人都看到了2頂黑帽子,
他們以為就只有兩頂,所以,第一次關燈不打耳光;第二次關燈,他們想,如果只有兩頂黑帽子的話,按照上述第一種情況的推論,那兩個帶黑帽子的人應該已經知道了自己是黑帽子,所以,第二次關燈,他們應該會打耳光。但實際,沒有耳光聲。
所以,第三次關燈,帶黑帽子的人知道不止2頂黑帽子,而他們看到外面只有2頂,那剩下1頂應該就是自己,所以,第三次關燈時,他們會打耳光。
以此推論,有N個人戴黑帽子,他們看到外面有N-1頂黑帽子,他們先假定外面就只有N-1頂黑帽子,那麼隨著一次次的關燈,到第N-2次時,還沒有耳光,則第N-1次關燈,那N-1個人應該已經知道自己是黑帽子,會打耳光,但實際沒有耳光聲,所以,第N次關燈,他們就知道自己是黑帽子了。
㈧ 推理題:有1位老師,准備3頂白帽子,2頂黑帽子,讓3個學生看到,然後叫他們閉上眼睛,分別給他們戴上
甲可以。丙推斷不出自己帽子的顏色則甲乙兩人的帽子可能是2白或1白1黑,乙也推斷不出自己帽子的顏色則甲的帽子顏色只能為白色,故甲可以推斷出自己帽子的顏色
㈨ 經典智力題——帽子顏色問題
若第三個人知道他戴的帽子,那麼就只有一種可能性:前面兩個人戴的是白帽子,他是黑帽子。這樣第二個人也就知道他戴了白的,第三個人也就知道了。
但是如果第一個人不知道,那麼前面兩個人中至少有一人是黑帽子,此時如果第二個人知道,那就只有一種可能:第一個人是白帽子,他是黑帽子。
實際上第二個人不知道他自己是什麼帽子,那麼他肯定是看到了前面的人戴的是黑帽子。(因為他和第一個人中肯定有一個人戴的是黑帽子,若第一個人是白色的,那他肯定是黑色的,但是第一個人如果是黑色的,那他就不知道他是什麼顏色的了)
這樣聽到後面兩個人的回答都是:不知道的時候,第一個人就能猜出他戴的是黑帽子了
三人從後到前表示為:3,2,1
若3知, 則:3(黑),2(白),1(白)
若3不知,則:3( ),2(白),1(黑)
3( ),2(黑),1(白)
3( ),2(黑),1(黑)
若3不知而2知,則只有一種情況:
3( ),2(黑),1(白)
但是若3不知而2也不知,就有下面兩種情況:
3( ),2(白),1(黑)
3( ),2(黑),1(黑)
不論以上兩種中的那種情況第一個人都可以得出結論:
他戴的是黑色的帽子,三人全是黑帽子只是其中的一個可能性而已。
㈩ 一道經典的推理題 - 黑白帽子問題
1.假定只有一頂黑帽子,那麼戴黑帽子的人看到其他人都是白帽子後就知道了自己是黑帽子,所以他會在第一次關燈打耳光。
2.如果沒有人在第一次關燈打耳光,說明黑帽子數≥2,那麼戴黑帽子的人A看到場上只有一頂黑帽子B,而第一次關燈沒有人打耳光,說明B看到自己不是唯一的黑帽子,A就知道了自己是黑帽子。
3.如果沒有人在第二次關燈打耳光,說明黑帽子數≥3,所以C看到兩個黑帽子AB沒有打耳光,他就能確定自己是黑帽子。
結論,如果有n頂黑帽子,就會有n個人在第n次關燈打耳光