導航:首頁 > 帽子知識 > 黑帽子白帽子智力題十個人

黑帽子白帽子智力題十個人

發布時間:2022-05-10 20:52:58

㈠ 經典邏輯題:黑白帽子

若第三個人知道他戴的帽子,那麼就只有一種可能性:前面兩個人戴的是白帽子,他是黑帽子。這樣第二個人也就知道他戴了白的,第三個人也就知道了。
但是如果第一個人不知道,那麼前面兩個人中至少有一人是黑帽子,此時如果第二個人知道,那就只有一種可能:第一個人是白帽子,他是黑帽子。
實際上第二個人不知道他自己是什麼帽子,那麼他肯定是看到了前面的人戴的是黑帽子。(因為他和第一個人中肯定有一個人戴的是黑帽子,若第一個人是白色的,那他肯定是黑色的,但是第一個人如果是黑色的,那他就不知道他是什麼顏色的了)
這樣聽到後面兩個人的回答都是:不知道的時候,第一個人就能猜出他戴的是黑帽子了
三人從後到前表示為:3,2,1
若3知, 則:3(黑),2(白),1(白)

若3不知,則:3( ),2(白),1(黑)
3( ),2(黑),1(白)
3( ),2(黑),1(黑)

若3不知而2知,則只有一種情況:
3( ),2(黑),1(白)
但是若3不知而2也不知,就有下面兩種情況:
3( ),2(白),1(黑)
3( ),2(黑),1(黑)
不論以上兩種中的那種情況第一個人都可以得出結論:
他戴的是黑色的帽子,三人全是黑帽子只是其中的一個可能性而已。

㈡ 有十頂白帽子和九頂黑帽子,有10個人,每人頭上一頂帽子

白色

首先重復一下問題:有十頂白帽子和九頂黑帽子,有10個人,每人頭上一頂帽子
。前後排成一列,每個人只能看到前面所有人的帽子的顏色,從第三個人開始到第十個人都不知道自己帽子的顏色。第二個人知道自己帽子的顏色,問第二個人的帽子的顏色是什麼?

原因:

如果第10個人看到前面9個人都戴黑帽子就會知道自己戴白帽子,所以,他能看到的人(前面9個人)裡面至少有一個人戴著白帽子;於是,如果第9個人看到前面8個人都戴黑帽子就會知道自己戴白帽子,所以,他可以看到的前8個人裡面也有人戴白帽子;已此類推至第三個人為止都因為看到自己前面人戴的帽子有人戴白帽子所以不能判斷自己的帽子顏色。

接下來,如果第1個人戴白帽子那麼同理第2個也不能判斷自己戴什麼顏色的帽子,只有第2個人看到第1個人戴黑帽子的時候才可以判斷出自己戴的是白帽子(因為前面9個人全部戴白帽子的時候3-10人也不能判斷自己帽子的顏色)。

問題的答案到此結束,但是問題里有個隱含條件——第2個人知道了自己的帽子顏色,表示第1個人戴黑帽子,所以第1個人也是知道帽子顏色的,這一點在問題里被省略!

㈢ ◆一個很有趣的智力題◆

三個人 若是兩個人,設A、B是黑帽子,第二次關燈就會有人打耳光。原因是A看到B第一次沒打耳光,就知道B也一定看到了有帶黑帽子的人,可A除了知道B帶黑帽子外,其他人都是白帽子,就可推出他自己是帶黑帽子的人!同理B也是這么想的,這樣第二次熄燈會有兩個耳光的聲音。 如果是三個人,A,B,C. A第一次沒打耳光,因為他看到B,C都是帶黑帽子的;而且假設自己帶的是白帽子,這樣只有BC戴的是黑帽子;按照只有兩個人帶黑帽子的推論,第二次應該有人打耳光;可第二次卻沒有。。。於是他知道B和C一定看到了除BC之外的其他人帶了黑帽子,於是他知道BC看到的那個人一定是他,所以第三次有三個人打了自己一個耳光! 若是第三次也沒有人打耳光,而是第四次有人打了耳光,那麼應該有幾個人帶了黑貓子呢?大家給個結果看看^_^ 第幾次關燈有耳光聲就有幾頂黑帽子!

㈣ 有10個人,被外星人抓走了,讓他們每人頭上戴一頂帽子(黑色,白色)不準作弊,排成從高到矮,說出自己

如果前面戴的都是白帽子,則最後一人就知道自己戴的是黑帽子。若最後一人回答不知道,則前面兩人戴的都是黑帽子或一人白帽子一人黑帽子;此時,若最前面的人戴的是白帽子,則中間的人就知道自己戴的是黑帽子;若中間的人回答不知道,則最前面的人戴的是黑帽子。

㈤ 一道經典的推理題 - 黑白帽子問題

1.假定只有一頂黑帽子,那麼戴黑帽子的人看到其他人都是白帽子後就知道了自己是黑帽子,所以他會在第一次關燈打耳光。
2.如果沒有人在第一次關燈打耳光,說明黑帽子數≥2,那麼戴黑帽子的人A看到場上只有一頂黑帽子B,而第一次關燈沒有人打耳光,說明B看到自己不是唯一的黑帽子,A就知道了自己是黑帽子。
3.如果沒有人在第二次關燈打耳光,說明黑帽子數≥3,所以C看到兩個黑帽子AB沒有打耳光,他就能確定自己是黑帽子。
結論,如果有n頂黑帽子,就會有n個人在第n次關燈打耳光

㈥ IQ題:一群人開舞會,每人頭上都戴著一頂帽子。帽子只有黑白兩種,黑的至少有一頂。每個人都能看到其他人

3個
這是道典型的邏輯題,奧妙就在你得作個假設。假如只有一個人戴黑帽子,那他看到所有人都戴白帽,在第一次關燈時就應打耳光,所以應該不止一個人戴黑帽子;如果有兩頂黑帽子,第一次兩人都只看到對方頭上的黑帽子,不敢確定自己的顏色,但到第二次關燈,這兩人應該明白,如果自己戴著白帽,那對方早在上一次就應打耳光了,因此自己戴的也是黑帽子―――於是也會有兩個人打耳光;可事實是第三次才響起打耳光聲,說明全場有三頂黑帽,依此類推,應該是關幾次燈,有幾頂黑帽。

㈦ 一個經典智力題—-—偶不廢亞~~~

首先應該知道肯定是其中3頂帽子戴上了,另外2頂在這里根本就沒有。而且3個人都是足夠聰明的。
如果最後一個人看到前邊兩個人都是白帽子,就知道自己肯定是黑帽子;但是第2個人一看最後一個人不說話,就知道自己和第一個人並不都是白帽子。
如果第2個人看見第1個人是白帽子,那麼他就知道自己肯定不是白帽子而是黑帽子(如果自己和第一個人都是白帽子,那最後一個人就應該會猜出來)。那麼第2個人為什麼也不吭聲呢?當然就是因為第一個人是黑帽子,所以第2個人不知道自己到底是黑帽子還是白帽子。
然而這一切,不僅是他們自己知道,第1個人肯定也能想得到。所以,第1個人先想到第3個人的想法,接著知道第2個人的想法,一看他們兩個都不說話,就肯定是他們兩個不能猜出來。所以自己肯定是黑帽子。
上面那些人注意!這是邏輯推理,不是腦筋急轉彎!
這道題的確比較繞……

㈧ 10人站成一列,一人一個帽子,兩種顏色共10個,每人只能看到前面人的帽子,從最後一人依次往前問所戴帽子的

一共3紅4黑5白,第十個人不知道的話,可推出前9個人的所有可能情況:
紅 黑 白
3 3 3
3 2 4
3 1 5
2 3 4
2 2 5
1 3 5
如果第九個人不知道的話,可推出前8個人的所有可能情況:
紅 黑 白
1 2 5
1 3 4
2 1 5
2 2 4
2 3 3
3 1 4
3 2 3
由此類推可知,當推倒第六個人時,會發現他已經肯定知道他自己戴的是什麼顏色的帽子了.

「有3頂黑帽子,2頂白帽子。讓三個人從前到後站成一排,給他們每個人頭上戴一頂帽子。每個人都看不見自己戴的帽子的顏色,卻只能看見站在前面那些人的帽子顏色。(所以最後一個人可以看見前面兩個人頭上帽子的顏色,中間那個人看得見前面那個人的帽子顏色但看不見在他後面那個人的帽子顏色,而最前面那個人誰的帽子都看不見。現在從最後那個人開始,問他是不是知道自己戴的帽子顏色,如果他回答說不知道,就繼續問他前面那個人。事實上他們三個戴的都是黑帽子,那麼最前面那個人一定會知道自己戴的是黑帽子。為什麼?」
答案是,最前面的那個人聽見後面兩個人都說了「不知道」,他假設自己戴的是白帽子,於是中間那個人就看見他戴的白帽子。那麼中間那個人會作如下推理:「假設我戴了白帽子,那麼最後那個人就會看見前面兩頂白帽子,但總共只有兩頂白帽子,他就應該明白他自己戴的是黑帽子,現在他說不知道,就說明我戴了白帽子這個假定是錯的,所以我戴了黑帽子。」問題是中間那人也說不知道,所以最前面那個人知道自己戴白帽子的假定是錯的,所以他推斷出自己戴了黑帽子。
我們把這個問題推廣成如下的形式:
「有若干種顏色的帽子,每種若干頂。假設有若干個人從前到後站成一排,給他們每個人頭上戴一頂帽子。每個人都看不見自己戴的帽子的顏色,而且每個人都看得見在他前面所有人頭上帽子的顏色,卻看不見在他後面任何人頭上帽子的顏色。現在從最後那個人開始,
問他是不是知道自己戴的帽子顏色,如果他回答說不知道,就繼續問他前面那個人。一直往前問,那麼一定有一個人知道自己所戴的帽子顏色。」
當然要假設一些條件:
1)首先,帽子的總數一定要大於人數,否則帽子都不夠戴。
2)「有若干種顏色的帽子,每種若干頂,有若幹人」這個信息是隊列中所有人都事先知道的,而且所有人都知道所有人都知道此事,所有人都知道所有人都知道所有人都知道此事,等等等等。但在這個條件中的「若干」不一定非要具體一一給出數字來。
這個信息具體地可以是象上面經典的形式,列舉出每種顏色帽子的數目「有3頂黑帽子,2頂白帽子,3個人」,也可以是「有紅黃綠三種顏色的帽子各1頂2頂3頂,但具體不知道哪種顏色是幾頂,有6個人」,甚至連具體人數也可以不知道,「有不知多少人排成一排,有黑白兩種帽子,每種帽子的數目都比人數少1」,這時候那個排在最後的人並不知道自己排在最後——直到開始問他時發現在他回答前沒有別人被問到,他才知道他在最後。在這個帖子接下去的部分當我出題的時候我將只寫出「有若干種顏色的帽子,每種若干頂,有若幹人」這個預設條件,因為這部分確定了,題目也就確定了。
3)剩下的沒有戴在大家頭上的帽子當然都被藏起來了,隊伍里的人誰都不知道都剩下些什麼帽子。
4)所有人都不是色盲,不但不是,而且只要兩種顏色不同,他們就能分別出來。當然他們的視力也很好,能看到前方任意遠的地方。他們極其聰明,邏輯推理是極好的。總而言之,只要理論上根據邏輯推導得出來,他們就一定推導得出來。相反地如果他們推不出自己頭上帽子的顏色,任何人都不會試圖去猜或者作弊偷看——不知為不知。
5)後面的人不能和前面的人說悄悄話或者打暗號。
當然,不是所有的預設條件都能給出一個合理的題目。比如有99頂黑帽子,99頂白帽子,2個人,無論怎麼戴,都不可能有人知道自己頭上帽子的顏色。另外,只要不是只有一種顏色的帽子,在只由一個人組成的隊伍里,這個人也是不可能說出自己帽子的顏色的。
但是下面這幾題是合理的題目:
1)3頂紅帽子,4頂黑帽子,5頂白帽子,10個人。
2)3頂紅帽子,4頂黑帽子,5頂白帽子,8個人。
3)n頂黑帽子,n-1頂白帽子,n個人(n>0)。
4)1頂顏色1的帽子,2頂顏色2的帽子,……,99頂顏色99的帽子,100頂顏色100的帽子,共5000個人。
5)有紅黃綠三種顏色的帽子各1頂2頂3頂,但具體不知道哪種顏色是幾頂,有6個人。
6)有不知多少人(至少兩人)排成一排,有黑白兩種帽子,每種帽子的數目都比人數少1。
大家可以先不看我下面的分析,試著做做這幾題。
如果按照上面3頂黑帽2頂白帽時的推理方法去做,那麼10個人就可以把我們累死,別說5000個人了。但是3)中的n是個抽象的數,考慮一下怎麼解決這個問題,對解決一般的問題大有好處。
假設現在n個人都已經戴好了帽子,問排在最後的那一個人他頭上的帽子是什麼顏色,什麼時候他會回答「知道」?很顯然,只有在他看見前面n-1個人都戴著白帽時才可能,因為這時所有的n-1頂白帽都已用光,在他自己的腦袋上只能頂著黑帽子,只要前面有一頂黑帽子,那麼他就無法排除自己頭上是黑帽子的可能——即使他看見前面所有人都是黑帽,他還是有可能戴著第n頂黑帽。
現在假設最後那個人的回答是「不知道」,那麼輪到問倒數第二人。根據最後面那位的回答,他能推斷出什麼呢?如果他看見的都是白帽,那麼他立刻可以推斷出自己戴的是黑帽——要是他也戴著白帽,那麼最後那人應該看見一片白帽,問到他時他就該回答「知道」了。但是如果倒數第二人看見前面至少有一頂黑帽,他就無法作出判斷——他有可能戴著白帽,但是他前面的那些黑帽使得最後那人無法回答「知道」;他自然也有可能戴著黑帽。
這樣的推理可以繼續下去,但是我們已經看出了苗頭。最後那個人可以回答「知道」當且僅當他看見的全是白帽,所以他回答「不知道」當且僅當他至少看見了一頂黑帽。這就是所有帽子顏色問題的關鍵!
如果最後一個人回答「不知道」,那麼他至少看見了一頂黑帽,所以如果倒數第二人看見的都是白帽,那麼最後那個人看見的至少一頂黑帽在哪裡呢?不會在別處,只能在倒數第二人自己的頭上。這樣的推理繼續下去,對於隊列中的每一個人來說就成了:
「在我後面的所有人都看見了至少一頂黑帽,否則的話他們就會按照相同的判斷斷定自己戴的是黑帽,所以如果我看見前面的人戴的全是白帽的話,我頭上一定戴著我身後那個人看見的那頂黑帽。」
我們知道最前面的那個人什麼帽子都看不見,就不用說看見黑帽了,所以如果他身後的所有人都回答說「不知道」,那麼按照上面的推理,他可以確定自己戴的是黑帽,因為他身後的人必定看見了一頂黑帽——只能是第一個人他自己頭上的那頂。事實上很明顯,第一個說出自己頭上是什麼顏色帽子的那個人,就是從隊首數起的第一個戴黑帽子的人,也就是那個從隊尾數起第一個看見前面所有人都戴白帽子的人。
這樣的推理也許讓人覺得有點循環論證的味道,因為上面那段推理中包含了「如果別人也使用相同的推理」這樣的意思,在邏輯上這樣的自指式命題有點危險。但是其實這里沒有循環論證,這是類似數學歸納法的推理,每個人的推理都建立在他後面那些人的推理上,而對於最後一個人來說,他的身後沒有人,所以他的推理不依賴於其他人的推理就可以成立,是歸納中的第一個推理。稍微思考一下,我們就可以把上面的論證改得適合於任何多種顏色的推論:
「如果我們可以從假設斷定某種顏色的帽子一定會在隊列中出現,從隊尾數起第一個看不見這種顏色的帽子的人就立刻可以根據和此論證相同的論證來作出判斷,他戴的是這種顏色的帽子。現在所有我身後的人都回答不知道,所以我身後的人也看見了此種顏色的帽子。如果在我前面我見不到此顏色的帽子,那麼一定是我戴著這種顏色的帽子。」
當然第一個人的初始推理相當簡單:「隊列中一定有人戴這種顏色的帽子,現在我看不見前面有人戴這顏色的帽子,那它只能是戴在我的頭上了。」
對於題1)事情就變得很明顯,3頂紅帽子,4頂黑帽子,5頂白帽子給10個人戴,隊列中每種顏色至少都該有一頂,於是從隊尾數起第一個看不見某種顏色的帽子的人就能夠斷定他自己戴著這種顏色的帽子,通過這點我們也可以看到,最多問到從隊首數起的第三人時,就應該有人回答「知道」了,因為從隊首數起的第三人最多隻能看見兩頂帽子,所以最多看見兩種顏色,如果他後面的人都回答「不知道」,那麼他前面一定有兩種顏色的帽子,而他頭上戴的一定是他看不見的那種顏色的帽子。
題2)也一樣,3頂紅帽子,4頂黑帽子,5頂白帽子給8個人戴,那麼隊列中一定至少有一頂白帽子,因為其它顏色加起來一共才7頂,所以隊列中一定會有人回答「知道」。
題4)的規模大了一點,但是道理和2)完全一樣。100種顏色的5050頂帽子給5000人戴,前面99種顏色的帽子數量是1 …… 99=4950,所以隊列中一定有第100種顏色的帽子(至少有50頂),所以如果自己身後的人都回答「不知道」,那麼那個看不見顏色100帽子的人就可以斷定自己戴著這種顏色的帽子。
至於5)、6)「有紅黃綠三種顏色的帽子各1頂2頂3頂,但具體不知道哪種顏色是幾頂,有6個人」以及「有不知多少人排成一排,有黑白兩種帽子,每種帽子的數目都比人數少1」,原理完全相同,我就不具體分析了。
最後要指出的一點是,上面我們只是論證了,如果我們可以根據各種顏色帽子的數量和隊列中的人數判斷出在隊列中至少有一頂某種顏色的帽子,那麼一定有一人可以判斷出自己頭上的帽子的顏色。因為如果所有身後的人都回答「不知道」的話,那個從隊尾數起第一個看不見這種顏色的帽子的人就可以判斷自己戴了此顏色的帽子。但是這並不是說在詢問中一定是由他來回答「知道」的,因為還可能有其他的方法來判斷自己頭上帽子的顏色。比如說在題2)中,如果隊列如下:(箭頭表示隊列中人臉朝的方向)
白白黑黑黑黑紅紅紅白→
那麼在隊尾第一人就立刻可以回答他頭上的是白帽,因為他看見了所有的3頂紅帽子和4頂黑帽子,能留給他自己戴的只能是白帽子了

㈨ 在一房間里有4個小孩,2個戴黑帽子。

A,在別人沒猜之後,不可能猜中,因為他什麼都看不見。
B,在別人沒猜之後,不可能猜中,因為他也什麼都看不見。
如果B和C戴同樣顏色的帽子,那麼D一定能猜中自己帽子的顏色。
如果B和C戴不同顏色的帽子,那麼D一定不能猜中自己帽子的顏色。

這個題目的題意明顯有問題,因為4個小孩怎麼猜?是用嘴說嗎?如果一個小孩用嘴說,評判人回答有沒有猜中,那麼其他3個小孩根據聽到的話,也可能猜中自己帽子的顏色。如果4個小孩,只是把自己猜的答案寫在紙上,同時交給評判人,那麼除了D把握性大一些之外,其他3人都是亂猜的呀。

帽子只有兩種顏色,任何人猜,都有50%的命中率呀。

如果是說出來,那麼我想是這樣的:由於沉默片刻,說明D猶豫了一下,C根據D的猶豫,判斷出自己帽子的顏色跟B不同,所以C第一個猜中了,緊接著B,由於聽到C猜中的結果,又根據D的表現,只要說一下相反的顏色,就可以猜中,所以B第二個猜中了。而A和D,誰第三個猜,誰都可能猜錯,而最後一個猜的人,也輕松的猜中了。

如果評判人說,如果你覺得能猜中,就請你大聲說你能猜中,但不要說出猜中結果,只要把結果寫在一張紙上,給我看,就行了。如果這樣,C猜中後,B就要亂猜了。

但是也不能認為C就是有根據的猜,因為按照題意,沉默片刻,難道D就不能故意這樣的表現嗎?D如果一眼就能猜中,而他一說能猜中,那麼緊接著C就能猜中,這是不說出猜中結果的情況,如果D說出猜中結果,被ABC聽到了,那麼他們三人也很快能猜中了。D完全可以故意,表現不那麼急著猜,沉默片刻呀。

既然是有意識的猜,為什麼D就那麼傻,如果能一眼猜中,就不能沉默片刻了嗎?如果D一眼猜不中,為什麼就要沉默片刻呢,就不能故意表現出很快猜中的樣子嗎?

這個題目,也太小兒科了吧,也太沒什麼意義了吧。設置的條件,讓A和B,如何猜,完全有利於C和D嘛。沉默片刻,就說明人家猜不中嗎?沒聽過兵不厭詐嗎?難道D不可以故意第一個胡亂的說猜中,以干擾C作判斷嗎?

㈩ 求一道智力題

這道題本來是這樣的一群人開舞會,每人頭上都戴著一頂帽子。帽子只有黑白兩種,黑的至少有一頂。每個人都能看到其它人帽子的顏色,卻看不到自己的。主持人先讓大家看看別人頭上戴的是什幺帽子,然後關燈,如果有人認為自己戴的是黑帽子,就打自己一個耳光。第一次關燈,沒有聲音。於是再開燈,大家再看一遍,關燈時仍然鴉雀無聲。一直到第三次關燈,才有劈劈啪啪打耳光的聲音響起。問有多少人戴著黑帽子?

答:有三個人戴黑帽。假設有N個人戴黑,當N=1時,戴黑人看見別人都為白則能肯
定自己為黑。於是第一次關燈就應該有聲。可以斷定N>1。對於每個戴黑的人來說,他能看見N-1頂黑帽 ,並由此假定自己為 白。但等待N-1次還沒有人打自己以後,每個戴黑人都能知道自己也是黑的了。所以第N次關燈就有N個人打自己。
雖然有所變化,但是情況還是相同的。解決這樣的問題,關鍵就是要把自己放在題目裡面想像。

與黑帽子白帽子智力題十個人相關的資料

熱點內容
麵包服羽絨服特點 瀏覽:1000
十種簡單衣花樣的視頻 瀏覽:660
王佳芝從風衣里拿出來 瀏覽:622
接親新娘穿旗袍 瀏覽:524
自己怎麼改褲子太大了 瀏覽:969
男士穿加大碼衣服要穿多大的褲子 瀏覽:926
女士襯衣搭外套的穿法 瀏覽:540
暗粉紅色上衣配什麼褲子 瀏覽:676
帽子和貓的單詞怎麼寫 瀏覽:152
大臉女人帶什麼帽子好看嗎 瀏覽:952
文胸一般是多少厘米 瀏覽:981
打補丁褲子 瀏覽:867
女裝店面轉讓評估價 瀏覽:508
襯衫的小圓領英文怎麼表達 瀏覽:996
女孩穿綠色褲子還是紅色好看 瀏覽:977
加大加肥男士夏季短袖襯衫 瀏覽:191
綠上衣配藍褲子 瀏覽:110
王源和王源女裝 瀏覽:430
真絲薄紗旗袍美女視頻 瀏覽:543
短款風衣穿襯衫嗎 瀏覽:13