導航:首頁 > 帽子知識 > 小學帽子顏色題答案

小學帽子顏色題答案

發布時間:2023-03-25 07:56:39

Ⅰ 小學奧數(邏輯推理)

  1. 每兩個人都要對打,那麼每個人都是三場比賽,三個人勝利的是一樣的.而且你勝利,對方就是失敗.你可以畫一個4X4的各自來作為對陣勝負表進行調整,既然甲勝了丁,那麼丁其實就是全輸.甲勝利2場

  2. 沒有什麼絕招,只能是你一點一點的推斷.

    根據題意就是說,帽子上,甲只能是黃,藍,乙只能是紅,藍,衣服上,乙只能是紅,藍,

    根據3戴紅帽子的學生沒有穿藍衣服;4、戴黃帽子的學生穿著紅衣服->也就是說,黃帽子穿紅衣服,紅帽子穿黃衣服,藍帽子穿藍衣服,

    於是可以得知甲乙丙的帽子衣服分別是,帽子(衣服),

    第一種:甲:黃紅,乙:紅黃,丙:藍藍

    第二種:甲:黃紅,乙:藍藍,丙:紅黃

    第三種:甲:藍藍,乙:紅黃,丙:黃紅

    第一種,第三種情況下,乙都穿了黃衣服,不符合題意,最終第二種答案就是最終答案

    甲乙丙三人分別戴帽子顏色是黃,藍,紅

Ⅱ 經典帽子問題,5個人

上面的答案似乎符合題意,但是膚淺,不符邏輯。 現在提供這種推斷:假如A戴藍帽子,他看見B.C戴的帽子可能是兩紅或者是一紅一藍。這樣他都不能判斷,所以他不知道自己帽子的顏色。B看見A戴藍帽子的情況下,自然也可以推斷出「B.C戴的帽子可能是兩紅或者是一紅一藍」這種情況。如果他看見C戴藍帽子,他就可以知道自己是戴紅帽子。但是依題可知,他是看見了C戴紅帽子,所以他也還不能判斷自己帽子的顏色。C看見A戴藍帽子的情況下,自然也能有B一樣的推斷,所以他知道自己是戴紅帽子的。 所以答案是 A戴藍帽子,B戴紅帽子,C戴紅帽子。
滿意請採納

Ⅲ 猜帽子的顏色(請給出答案和過程)

三個人都帶紅的
以甲為例
加掙開眼睛看到兩個紅色的帽子
他認為自己不是紅的就是藍的
所以不知道
又不約而同地說:「知道了」
說明每個人想的和甲一樣
自然知道自己戴紅帽子

Ⅳ 10人站成一列,一人一個帽子,兩種顏色共10個,每人只能看到前面人的帽子,從最後一人依次往前問所戴帽子的

一共3紅4黑5白,第十個人不知道的話,可推出前9個人的所有可能情況:
紅 黑 白
3 3 3
3 2 4
3 1 5
2 3 4
2 2 5
1 3 5
如果第九個人不知道的話,可推出前8個人的所有可能情況:
紅 黑 白
1 2 5
1 3 4
2 1 5
2 2 4
2 3 3
3 1 4
3 2 3
由此類推可知,當推倒第六個人時,會發現他已經肯定知道他自己戴的是什麼顏色的帽子了.

「有3頂黑帽子,2頂白帽子。讓三個人從前到後站成一排,給他們每個人頭上戴一頂帽子。每個人都看不見自己戴的帽子的顏色,卻只能看見站在前面那些人的帽子顏色。(所以最後一個人可以看見前面兩個人頭上帽子的顏色,中間那個人看得見前面那個人的帽子顏色但看不見在他後面那個人的帽子顏色,而最前面那個人誰的帽子都看不見。現在從最後那個人開始,問他是不是知道自己戴的帽子顏色,如果他回答說不知道,就繼續問他前面那個人。事實上他們三個戴的都是黑帽子,那麼最前面那個人一定會知道自己戴的是黑帽子。為什麼?」
答案是,最前面的那個人聽見後面兩個人都說了「不知道」,他假設自己戴的是白帽子,於是中間那個人就看見他戴的白帽子。那麼中間那個人會作如下推理:「假設我戴了白帽子,那麼最後那個人就會看見前面兩頂白帽子,但總共只有兩頂白帽子,他就應該明白他自己戴的是黑帽子,現在他說不知道,就說明我戴了白帽子這個假定是錯的,所以我戴了黑帽子。」問題是中間那人也說不知道,所以最前面那個人知道自己戴白帽子的假定是錯的,所以他推斷出自己戴了黑帽子。
我們把這個問題推廣成如下的形式:
「有若干種顏色的帽子,每種若干頂。假設有若干個人從前到後站成一排,給他們每個人頭上戴一頂帽子。每個人都看不見自己戴的帽子的顏色,而且每個人都看得見在他前面所有人頭上帽子的顏色,卻看不見在他後面任何人頭上帽子的顏色。現在從最後那個人開始,
問他是不是知道自己戴的帽子顏色,如果他回答說不知道,就繼續問他前面那個人。一直往前問,那麼一定有一個人知道自己所戴的帽子顏色。」
當然要假設一些條件:
1)首先,帽子的總數一定要大於人數,否則帽子都不夠戴。
2)「有若干種顏色的帽子,每種若干頂,有若幹人」這個信息是隊列中所有人都事先知道的,而且所有人都知道所有人都知道此事,所有人都知道所有人都知道所有人都知道此事,等等等等。但在這個條件中的「若干」不一定非要具體一一給出數字來。
這個信息具體地可以是象上面經典的形式,列舉出每種顏色帽子的數目「有3頂黑帽子,2頂白帽子,3個人」,也可以是「有紅黃綠三種顏色的帽子各1頂2頂3頂,但具體不知道哪種顏色是幾頂,有6個人」,甚至連具體人數也可以不知道,「有不知多少人排成一排,有黑白兩種帽子,每種帽子的數目都比人數少1」,這時候那個排在最後的人並不知道自己排在最後——直到開始問他時發現在他回答前沒有別人被問到,他才知道他在最後。在這個帖子接下去的部分當我出題的時候我將只寫出「有若干種顏色的帽子,每種若干頂,有若幹人」這個預設條件,因為這部分確定了,題目也就確定了。
3)剩下的沒有戴在大家頭上的帽子當然都被藏起來了,隊伍里的人誰都不知道都剩下些什麼帽子。
4)所有人都不是色盲,不但不是,而且只要兩種顏色不同,他們就能分別出來。當然他們的視力也很好,能看到前方任意遠的地方。他們極其聰明,邏輯推理是極好的。總而言之,只要理論上根據邏輯推導得出來,他們就一定推導得出來。相反地如果他們推不出自己頭上帽子的顏色,任何人都不會試圖去猜或者作弊偷看——不知為不知。
5)後面的人不能和前面的人說悄悄話或者打暗號。
當然,不是所有的預設條件都能給出一個合理的題目。比如有99頂黑帽子,99頂白帽子,2個人,無論怎麼戴,都不可能有人知道自己頭上帽子的顏色。另外,只要不是只有一種顏色的帽子,在只由一個人組成的隊伍里,這個人也是不可能說出自己帽子的顏色的。
但是下面這幾題是合理的題目:
1)3頂紅帽子,4頂黑帽子,5頂白帽子,10個人。
2)3頂紅帽子,4頂黑帽子,5頂白帽子,8個人。
3)n頂黑帽子,n-1頂白帽子,n個人(n>0)。
4)1頂顏色1的帽子,2頂顏色2的帽子,……,99頂顏色99的帽子,100頂顏色100的帽子,共5000個人。
5)有紅黃綠三種顏色的帽子各1頂2頂3頂,但具體不知道哪種顏色是幾頂,有6個人。
6)有不知多少人(至少兩人)排成一排,有黑白兩種帽子,每種帽子的數目都比人數少1。
大家可以先不看我下面的分析,試著做做這幾題。
如果按照上面3頂黑帽2頂白帽時的推理方法去做,那麼10個人就可以把我們累死,別說5000個人了。但是3)中的n是個抽象的數,考慮一下怎麼解決這個問題,對解決一般的問題大有好處。
假設現在n個人都已經戴好了帽子,問排在最後的那一個人他頭上的帽子是什麼顏色,什麼時候他會回答「知道」?很顯然,只有在他看見前面n-1個人都戴著白帽時才可能,因為這時所有的n-1頂白帽都已用光,在他自己的腦袋上只能頂著黑帽子,只要前面有一頂黑帽子,那麼他就無法排除自己頭上是黑帽子的可能——即使他看見前面所有人都是黑帽,他還是有可能戴著第n頂黑帽。
現在假設最後那個人的回答是「不知道」,那麼輪到問倒數第二人。根據最後面那位的回答,他能推斷出什麼呢?如果他看見的都是白帽,那麼他立刻可以推斷出自己戴的是黑帽——要是他也戴著白帽,那麼最後那人應該看見一片白帽,問到他時他就該回答「知道」了。但是如果倒數第二人看見前面至少有一頂黑帽,他就無法作出判斷——他有可能戴著白帽,但是他前面的那些黑帽使得最後那人無法回答「知道」;他自然也有可能戴著黑帽。
這樣的推理可以繼續下去,但是我們已經看出了苗頭。最後那個人可以回答「知道」當且僅當他看見的全是白帽,所以他回答「不知道」當且僅當他至少看見了一頂黑帽。這就是所有帽子顏色問題的關鍵!
如果最後一個人回答「不知道」,那麼他至少看見了一頂黑帽,所以如果倒數第二人看見的都是白帽,那麼最後那個人看見的至少一頂黑帽在哪裡呢?不會在別處,只能在倒數第二人自己的頭上。這樣的推理繼續下去,對於隊列中的每一個人來說就成了:
「在我後面的所有人都看見了至少一頂黑帽,否則的話他們就會按照相同的判斷斷定自己戴的是黑帽,所以如果我看見前面的人戴的全是白帽的話,我頭上一定戴著我身後那個人看見的那頂黑帽。」
我們知道最前面的那個人什麼帽子都看不見,就不用說看見黑帽了,所以如果他身後的所有人都回答說「不知道」,那麼按照上面的推理,他可以確定自己戴的是黑帽,因為他身後的人必定看見了一頂黑帽——只能是第一個人他自己頭上的那頂。事實上很明顯,第一個說出自己頭上是什麼顏色帽子的那個人,就是從隊首數起的第一個戴黑帽子的人,也就是那個從隊尾數起第一個看見前面所有人都戴白帽子的人。
這樣的推理也許讓人覺得有點循環論證的味道,因為上面那段推理中包含了「如果別人也使用相同的推理」這樣的意思,在邏輯上這樣的自指式命題有點危險。但是其實這里沒有循環論證,這是類似數學歸納法的推理,每個人的推理都建立在他後面那些人的推理上,而對於最後一個人來說,他的身後沒有人,所以他的推理不依賴於其他人的推理就可以成立,是歸納中的第一個推理。稍微思考一下,我們就可以把上面的論證改得適合於任何多種顏色的推論:
「如果我們可以從假設斷定某種顏色的帽子一定會在隊列中出現,從隊尾數起第一個看不見這種顏色的帽子的人就立刻可以根據和此論證相同的論證來作出判斷,他戴的是這種顏色的帽子。現在所有我身後的人都回答不知道,所以我身後的人也看見了此種顏色的帽子。如果在我前面我見不到此顏色的帽子,那麼一定是我戴著這種顏色的帽子。」
當然第一個人的初始推理相當簡單:「隊列中一定有人戴這種顏色的帽子,現在我看不見前面有人戴這顏色的帽子,那它只能是戴在我的頭上了。」
對於題1)事情就變得很明顯,3頂紅帽子,4頂黑帽子,5頂白帽子給10個人戴,隊列中每種顏色至少都該有一頂,於是從隊尾數起第一個看不見某種顏色的帽子的人就能夠斷定他自己戴著這種顏色的帽子,通過這點我們也可以看到,最多問到從隊首數起的第三人時,就應該有人回答「知道」了,因為從隊首數起的第三人最多隻能看見兩頂帽子,所以最多看見兩種顏色,如果他後面的人都回答「不知道」,那麼他前面一定有兩種顏色的帽子,而他頭上戴的一定是他看不見的那種顏色的帽子。
題2)也一樣,3頂紅帽子,4頂黑帽子,5頂白帽子給8個人戴,那麼隊列中一定至少有一頂白帽子,因為其它顏色加起來一共才7頂,所以隊列中一定會有人回答「知道」。
題4)的規模大了一點,但是道理和2)完全一樣。100種顏色的5050頂帽子給5000人戴,前面99種顏色的帽子數量是1 …… 99=4950,所以隊列中一定有第100種顏色的帽子(至少有50頂),所以如果自己身後的人都回答「不知道」,那麼那個看不見顏色100帽子的人就可以斷定自己戴著這種顏色的帽子。
至於5)、6)「有紅黃綠三種顏色的帽子各1頂2頂3頂,但具體不知道哪種顏色是幾頂,有6個人」以及「有不知多少人排成一排,有黑白兩種帽子,每種帽子的數目都比人數少1」,原理完全相同,我就不具體分析了。
最後要指出的一點是,上面我們只是論證了,如果我們可以根據各種顏色帽子的數量和隊列中的人數判斷出在隊列中至少有一頂某種顏色的帽子,那麼一定有一人可以判斷出自己頭上的帽子的顏色。因為如果所有身後的人都回答「不知道」的話,那個從隊尾數起第一個看不見這種顏色的帽子的人就可以判斷自己戴了此顏色的帽子。但是這並不是說在詢問中一定是由他來回答「知道」的,因為還可能有其他的方法來判斷自己頭上帽子的顏色。比如說在題2)中,如果隊列如下:(箭頭表示隊列中人臉朝的方向)
白白黑黑黑黑紅紅紅白→
那麼在隊尾第一人就立刻可以回答他頭上的是白帽,因為他看見了所有的3頂紅帽子和4頂黑帽子,能留給他自己戴的只能是白帽子了

Ⅳ 智力題:智辨帽色

如果丙看到了兩頂黑帽,則他馬上可以肯定他自己頭上戴的必是紅帽,因為黑帽只有兩頂.可是由於丙判斷不了,從而可以推知,他看到的情況必是兩頂紅帽或一紅一黑.若乙看到的是一頂黑帽,則在上述推理的基礎上即可判定他所戴的乃是紅帽,可是他說他也不知道頭上帽子的顏色;由此可以判定乙所看到的,甲頭上所戴的乃是紅帽.於是,甲可順理成章地(即使他是色盲患者,甚至真正的瞎子也沒有關系)判定:他頭上戴的必是一頂紅帽子.

Ⅵ 智力題)從十頂黃帽子和九頂藍帽子中,取出十頂分別給十個人戴上.每個人只能看見站在前面那些人的帽子顏

黃色的帽子,前九個人都是藍色的 第十個人看到了第一個人的黃帽子 所以他無法確認自己的帽子,剩下的人只能看到前面的人的帽子 都是藍色 都根據前面的人的想法 確定了前面有黃有藍到第一個人知道了大家都是藍的 那麼他自己只能是黃的

Ⅶ 經典智力題——帽子顏色問題

若第三個人知道他戴的帽子,那麼就只有一種可能性:前面兩個人戴的是白帽子,他是黑帽子。這樣第二個人也就知道他戴了白的,第三個人也就知道了。
但是如果第一個人不知道,那麼前面兩個人中至少有一人是黑帽子,此時如果第二個人知道,那就只有一種可能:第一個人是白帽子,他是黑帽子。
實際上第二個人不知道他自己是什麼帽子,那麼他肯定是看到了前面的人戴的是黑帽子。(因為他和第一個人中肯定有一個人戴的是黑帽子,若第一個人是白色的,那他肯定是黑色的,但是第一個人如果是黑色的,那他就不知道他是什麼顏色的了)
這樣聽到後面兩個人的回答都是:不知道的時候,第一個人就能猜出他戴的是黑帽子了
三人從後到前表示為:3,2,1
若3知, 則:3(黑),2(白),1(白)

若3不知,則:3( ),2(白),1(黑)
3( ),2(黑),1(白)
3( ),2(黑),1(黑)

若3不知而2知,則只有一種情況:
3( ),2(黑),1(白)
但是若3不知而2也不知,就有下面兩種情況:
3( ),2(白),1(黑)
3( ),2(黑),1(黑)
不論以上兩種中的那種情況第一個人都可以得出結論:
他戴的是黑色的帽子,三人全是黑帽子只是其中的一個可能性而已。

Ⅷ 趣味數學題及答案 帽子類

「一個男生看來,紅色運動帽和藍色運動帽一樣多,但一個女生看來,藍色運動帽比紅色運動帽多一倍。」 這一句話可以先簡化成:一共有紅藍兩種顏色的帽子,去一頂藍色帽子後紅色運動帽和藍色運動帽一樣多,去一頂紅色帽子藍色運動帽比紅色運動帽多一倍。試想:當去一頂藍色帽子後戴藍色帽子的男生不回到原處,這時那個戴紅帽女生看到的情況應該是 紅色帽子比藍色帽子少一頂,然後讓戴藍帽子的男生回到原處,這時那個女生看到的情況是 藍色帽子比紅色帽子多兩頂,也就是 藍色運動帽比紅色運動帽多一倍,易得:藍帽子有4頂,紅帽子有2頂

Ⅸ 三頂黑帽子,兩頂白帽的推理問題

A=白,B=黑,C=黑。

理由:

1.可以確定三人頭上不可能有兩頂白帽子.否則不是另一人看見有兩頂白帽子,就可以確定自己不是白帽子,而是黑帽子了;

下面在不能有兩頂白帽子的前提下進行推導:

2.C不可能是白帽子.假如C為白帽子,因為C的顏色是A和B都可以看到的,B聽到A說自己無法判斷自己帽子顏色後,B就可以判斷出自己不是白色了,而是黑色了,這與題意不符。所以C是黑帽子;

下面在C是黑帽子且沒有兩頂白帽子的前提下推導:

3.C是黑帽子的情況下,可能是(1)A白B黑,(2)A黑B白,或(3)A黑B黑三種情況,這三種情況中,B黑的時候A有兩種情況,B白的時候A只有一種情況,即A黑B白c黑。這樣A看到的是一黑一白,無法判斷自己帽子的顏色,B看到兩頂黑色,也無法判斷自己帽子的顏色。C看到的是一黑一白,C想:「如果自己是白色的,A就能看到兩頂白色的(B和C帽子的顏色),A就可以判斷自己是黑色的了。現在A無法判斷,所以自己一定是黑色。」也就是C在聽到A的話之後就能判斷自己帽子顏色了,而不要等到B說話。這與題中所述不符,所以B也不可能是白的,即B是黑的。

下面在B黑C黑的情況下討論:

4.剩下兩種情況,A白B黑C黑或A黑B黑C黑。從C的角度考慮,C想:「B看到A是黑色的,不管自己是黑是白B都無法判斷他自己帽子顏色,所以我也不能從B的話中判斷出自己帽子顏色。同時我看到兩頂黑色,也無法判斷自己帽子顏色,所以我總是判斷不出自己帽子的顏色。」這與題中情況不符,所以不可能都是黑色,所以只剩一種情況:A白B黑C黑。

從上可以判斷出唯一的可能是A白B黑C黑。

5.下面再來驗證一下是不是符合題意,即論證是否是得出題中事實的充分條件:

在A白B黑C黑的情況下,A看到的是兩頂黑色,所以無法判斷自己帽子的顏色;B看到一黑一白,也無法判斷自己帽子的顏色。C看到一白一黑,本來也無法判斷自己帽子顏色。但是聽了B的話後,C想:「假如自己是白色,B再看到A的白色,那麼B看到兩頂白色,那B就可以判斷自己肯定是黑色了。現在B不能判斷,那麼自己一定是白色。」這樣C就判斷出自己帽子的顏色了,與題中所述相符.

所以此題的答案是:A=白,B=黑,C=黑。

推理完畢!

Ⅹ 4個小孩猜帽子顏色

什麼屁邏輯,c要想猜中帽子顏色,起碼他得知道d有沒有回答錯。或者是說d在他之前回答,他才能判斷。這也只是可能,並不是完全。既然是可能得,那abd也是有可能猜對的。蒙的嘛!

與小學帽子顏色題答案相關的資料

熱點內容
汽油怎麼清洗羽絨服 瀏覽:408
如何用線打帽子視頻 瀏覽:863
米色褲子配什麼大衣好看嗎 瀏覽:351
淘寶女裝送什麼小禮物 瀏覽:258
兒童衣搭配牛仔褲 瀏覽:923
寬松中老年女裝秋裝外套 瀏覽:411
真空少婦透明睡衣圖 瀏覽:498
藍色西裝配格子襯衫 瀏覽:725
東風起亞正時怎麼對皮帶的 瀏覽:134
男女褲子可以互穿嗎 瀏覽:887
藍色褲子卡其色上衣好看嗎 瀏覽:627
穿校服適合扎什麼頭發好看嗎 瀏覽:802
金絲絨男士夾克 瀏覽:827
男士真皮皮帶啄木鳥 瀏覽:546
褲子都脫了是什麼電影 瀏覽:81
粉色搭配軍綠色褲子和鞋子 瀏覽:133
森馬專賣店女裝衣 瀏覽:407
羽絨服四五十歲女裝 瀏覽:844
短款和中長款風衣搭配圖片 瀏覽:396
新疆的帽子有什麼講究 瀏覽:624