導航:首頁 > 服裝知識 > 階梯猜帽子顏色的智力題

階梯猜帽子顏色的智力題

發布時間:2023-06-14 04:06:29

㈠ 推理游戲,答案是前兩個人戴紅帽子,後一個人戴黑帽子,問題看下面

一共有4種情況如下
3個黑帽子:不符合至少1個紅帽子
2個黑帽子1個紅帽子:紅帽子視野中有2黑,於是他會立馬想到規則至少1個紅帽子,從而反應過來自己是紅帽子,此種情況紅帽子先宣布自己帽子顏色,2個黑帽子隨後宣布。
1個黑帽子2個紅帽子:紅帽子視野中有1紅1黑,他會想:如果我是戴的黑帽子,那另一個戴紅帽子的人會參考第2種情況反應過來自己是戴的紅帽子,但是他沒有說話,所以我戴的一定是紅帽子,此種情況2個紅帽子的同時宣布自己帽子顏色,黑帽子隨後宣布。
3個紅帽子:紅帽子視野中有2紅,他會想:如果我戴的是黑帽子,那兩個戴紅帽子的人會參考第3種情況反應過來自己戴的是紅帽子,但是他沒有說話,所以我戴的一定是紅帽子,此種情況3人同時宣布自己帽子顏色。
綜上,第2種第3種和第4種是可以宣布自己帽子顏色的,但是依據題干所說大家宣布的順序,所以排除第2種和第4種情況,是第3種:1黑2紅

㈡ A、B、C、D四人誰先知道自己帽子顏色

首先,我們從站在最高的D開始推理
D看到1個黑色和1個白色,所以他無法知道自己是黑的還是白的,他猜不出來
C等了一段時間,發現D沒有猜出來,說明C和B顏色不同,(每種顏色2個,所以如果B和C相同,D立刻就能猜出自己的顏色)。所以C知道了自己和B相反,是黑色,第一個猜出來。

㈢ 智力題 猜帽子

答案:

1、只有前面兩個人的帽子是:一白一黑或全黑,第三個人才不知道自己戴的是什麼
2、前面兩個人的帽子是:一白一黑,如果第一個是白的,第二個人就會知道自己是黑的。
3、後兩個人不知道自己什麼帽子,第一個人就知道自己是黑的帽子。

㈣ 經典智力題——帽子顏色問題

若第三個人知道他戴的帽子,那麼就只有一種可能性:前面兩個人戴的是白帽子,他是黑帽子。這樣第二個人也就知道他戴了白的,第三個人也就知道了。
但是如果第一個人不知道,那麼前面兩個人中至少有一人是黑帽子,此時如果第二個人知道,那就只有一種可能:第一個人是白帽子,他是黑帽子。
實際上第二個人不知道他自己是什麼帽子,那麼他肯定是看到了前面的人戴的是黑帽子。(因為他和第一個人中肯定有一個人戴的是黑帽子,若第一個人是白色的,那他肯定是黑色的,但是第一個人如果是黑色的,那他就不知道他是什麼顏色的了)
這樣聽到後面兩個人的回答都是:不知道的時候,第一個人就能猜出他戴的是黑帽子了
三人從後到前表示為:3,2,1
若3知, 則:3(黑),2(白),1(白)

若3不知,則:3( ),2(白),1(黑)
3( ),2(黑),1(白)
3( ),2(黑),1(黑)

若3不知而2知,則只有一種情況:
3( ),2(黑),1(白)
但是若3不知而2也不知,就有下面兩種情況:
3( ),2(白),1(黑)
3( ),2(黑),1(黑)
不論以上兩種中的那種情況第一個人都可以得出結論:
他戴的是黑色的帽子,三人全是黑帽子只是其中的一個可能性而已。

㈤ 確認帽子顏色的智力題怎麼做 求高手

一群人玩一個智力游戲。每個人頭上有一頂帽子(分綠藍兩種顏色,藍色有若干頂,綠色至少有一頂)大家都可以看到他人的帽子,但卻看不到自己的,主持人讓大家站在一起,說「如果你們肯定自己的頭上不是藍帽子,就拍手!(沒人拍手)他又問了一次,(還是沒人拍),他接著又問,就響起了拍手聲。請問有幾個人帶了綠帽子。
呵呵,自以為自己戴綠帽子了,其實只有主持人一個人戴綠帽子。

㈥ 在一房間里有4個小孩,2個戴黑帽子。

A,在別人沒猜之後,不可能猜中,因為他什麼都看不見。
B,在別人沒猜之後,不可能猜中,因為他也什麼都看不見。
如果B和C戴同樣顏色的帽子,那麼D一定能猜中自己帽子的顏色。
如果B和C戴不同顏色的帽子,那麼D一定不能猜中自己帽子的顏色。

這個題目的題意明顯有問題,因為4個小孩怎麼猜?是用嘴說嗎?如果一個小孩用嘴說,評判人回答有沒有猜中,那麼其他3個小孩根據聽到的話,也可能猜中自己帽子的顏色。如果4個小孩,只是把自己猜的答案寫在紙上,同時交給評判人,那麼除了D把握性大一些之外,其他3人都是亂猜的呀。

帽子只有兩種顏色,任何人猜,都有50%的命中率呀。

如果是說出來,那麼我想是這樣的:由於沉默片刻,說明D猶豫了一下,C根據D的猶豫,判斷出自己帽子的顏色跟B不同,所以C第一個猜中了,緊接著B,由於聽到C猜中的結果,又根據D的表現,只要說一下相反的顏色,就可以猜中,所以B第二個猜中了。而A和D,誰第三個猜,誰都可能猜錯,而最後一個猜的人,也輕松的猜中了。

如果評判人說,如果你覺得能猜中,就請你大聲說你能猜中,但不要說出猜中結果,只要把結果寫在一張紙上,給我看,就行了。如果這樣,C猜中後,B就要亂猜了。

但是也不能認為C就是有根據的猜,因為按照題意,沉默片刻,難道D就不能故意這樣的表現嗎?D如果一眼就能猜中,而他一說能猜中,那麼緊接著C就能猜中,這是不說出猜中結果的情況,如果D說出猜中結果,被ABC聽到了,那麼他們三人也很快能猜中了。D完全可以故意,表現不那麼急著猜,沉默片刻呀。

既然是有意識的猜,為什麼D就那麼傻,如果能一眼猜中,就不能沉默片刻了嗎?如果D一眼猜不中,為什麼就要沉默片刻呢,就不能故意表現出很快猜中的樣子嗎?

這個題目,也太小兒科了吧,也太沒什麼意義了吧。設置的條件,讓A和B,如何猜,完全有利於C和D嘛。沉默片刻,就說明人家猜不中嗎?沒聽過兵不厭詐嗎?難道D不可以故意第一個胡亂的說猜中,以干擾C作判斷嗎?

㈦ 智力題:智辨帽色

如果丙看到了兩頂黑帽,則他馬上可以肯定他自己頭上戴的必是紅帽,因為黑帽只有兩頂.可是由於丙判斷不了,從而可以推知,他看到的情況必是兩頂紅帽或一紅一黑.若乙看到的是一頂黑帽,則在上述推理的基礎上即可判定他所戴的乃是紅帽,可是他說他也不知道頭上帽子的顏色;由此可以判定乙所看到的,甲頭上所戴的乃是紅帽.於是,甲可順理成章地(即使他是色盲患者,甚至真正的瞎子也沒有關系)判定:他頭上戴的必是一頂紅帽子.

㈧ 智力題:猜帽子的顏色

D能看見BC的帽子,C能看見B的帽子。因為按同一方向坐,如果D先說勒自己帽子的顏色,就證明BC帽子的顏色是一樣。 如果沒說的話,就知道C和B的帽子顏色不一樣,而B的帽子是黃色,顯然C的帽子是紅色。當C說出答案後B自然就知道自己的帽子的顏色,這樣就解開了。

㈨ 帽子定生死 智力題

至少9個
先是這樣的,前面9個人的帽子顏色,要麼紅色是單數,要麼藍是單數
如果紅色是單數,那麼藍色就是雙數,如果紅色是雙數,那麼藍色就是單數
所以,最後一個人看到前9個人帽子的顏色,如果紅色是單數,就說自己是紅色,如果藍色是單數就說自己是藍色,這樣最後一個就有50%的機會存活,而第9個人,就能從最後一個人說的顏色判斷自己帽子的顏色,同樣的第8個人就能根據第9個人和最後一個的回答知道自己帽子的顏色
同理,前面9個人都會知道自己帽子的顏色
也就是說,至少存活9個人

㈩ 10人站成一列,一人一個帽子,兩種顏色共10個,每人只能看到前面人的帽子,從最後一人依次往前問所戴帽子的

一共3紅4黑5白,第十個人不知道的話,可推出前9個人的所有可能情況:
紅 黑 白
3 3 3
3 2 4
3 1 5
2 3 4
2 2 5
1 3 5
如果第九個人不知道的話,可推出前8個人的所有可能情況:
紅 黑 白
1 2 5
1 3 4
2 1 5
2 2 4
2 3 3
3 1 4
3 2 3
由此類推可知,當推倒第六個人時,會發現他已經肯定知道他自己戴的是什麼顏色的帽子了.

「有3頂黑帽子,2頂白帽子。讓三個人從前到後站成一排,給他們每個人頭上戴一頂帽子。每個人都看不見自己戴的帽子的顏色,卻只能看見站在前面那些人的帽子顏色。(所以最後一個人可以看見前面兩個人頭上帽子的顏色,中間那個人看得見前面那個人的帽子顏色但看不見在他後面那個人的帽子顏色,而最前面那個人誰的帽子都看不見。現在從最後那個人開始,問他是不是知道自己戴的帽子顏色,如果他回答說不知道,就繼續問他前面那個人。事實上他們三個戴的都是黑帽子,那麼最前面那個人一定會知道自己戴的是黑帽子。為什麼?」
答案是,最前面的那個人聽見後面兩個人都說了「不知道」,他假設自己戴的是白帽子,於是中間那個人就看見他戴的白帽子。那麼中間那個人會作如下推理:「假設我戴了白帽子,那麼最後那個人就會看見前面兩頂白帽子,但總共只有兩頂白帽子,他就應該明白他自己戴的是黑帽子,現在他說不知道,就說明我戴了白帽子這個假定是錯的,所以我戴了黑帽子。」問題是中間那人也說不知道,所以最前面那個人知道自己戴白帽子的假定是錯的,所以他推斷出自己戴了黑帽子。
我們把這個問題推廣成如下的形式:
「有若干種顏色的帽子,每種若干頂。假設有若干個人從前到後站成一排,給他們每個人頭上戴一頂帽子。每個人都看不見自己戴的帽子的顏色,而且每個人都看得見在他前面所有人頭上帽子的顏色,卻看不見在他後面任何人頭上帽子的顏色。現在從最後那個人開始,
問他是不是知道自己戴的帽子顏色,如果他回答說不知道,就繼續問他前面那個人。一直往前問,那麼一定有一個人知道自己所戴的帽子顏色。」
當然要假設一些條件:
1)首先,帽子的總數一定要大於人數,否則帽子都不夠戴。
2)「有若干種顏色的帽子,每種若干頂,有若幹人」這個信息是隊列中所有人都事先知道的,而且所有人都知道所有人都知道此事,所有人都知道所有人都知道所有人都知道此事,等等等等。但在這個條件中的「若干」不一定非要具體一一給出數字來。
這個信息具體地可以是象上面經典的形式,列舉出每種顏色帽子的數目「有3頂黑帽子,2頂白帽子,3個人」,也可以是「有紅黃綠三種顏色的帽子各1頂2頂3頂,但具體不知道哪種顏色是幾頂,有6個人」,甚至連具體人數也可以不知道,「有不知多少人排成一排,有黑白兩種帽子,每種帽子的數目都比人數少1」,這時候那個排在最後的人並不知道自己排在最後——直到開始問他時發現在他回答前沒有別人被問到,他才知道他在最後。在這個帖子接下去的部分當我出題的時候我將只寫出「有若干種顏色的帽子,每種若干頂,有若幹人」這個預設條件,因為這部分確定了,題目也就確定了。
3)剩下的沒有戴在大家頭上的帽子當然都被藏起來了,隊伍里的人誰都不知道都剩下些什麼帽子。
4)所有人都不是色盲,不但不是,而且只要兩種顏色不同,他們就能分別出來。當然他們的視力也很好,能看到前方任意遠的地方。他們極其聰明,邏輯推理是極好的。總而言之,只要理論上根據邏輯推導得出來,他們就一定推導得出來。相反地如果他們推不出自己頭上帽子的顏色,任何人都不會試圖去猜或者作弊偷看——不知為不知。
5)後面的人不能和前面的人說悄悄話或者打暗號。
當然,不是所有的預設條件都能給出一個合理的題目。比如有99頂黑帽子,99頂白帽子,2個人,無論怎麼戴,都不可能有人知道自己頭上帽子的顏色。另外,只要不是只有一種顏色的帽子,在只由一個人組成的隊伍里,這個人也是不可能說出自己帽子的顏色的。
但是下面這幾題是合理的題目:
1)3頂紅帽子,4頂黑帽子,5頂白帽子,10個人。
2)3頂紅帽子,4頂黑帽子,5頂白帽子,8個人。
3)n頂黑帽子,n-1頂白帽子,n個人(n>0)。
4)1頂顏色1的帽子,2頂顏色2的帽子,……,99頂顏色99的帽子,100頂顏色100的帽子,共5000個人。
5)有紅黃綠三種顏色的帽子各1頂2頂3頂,但具體不知道哪種顏色是幾頂,有6個人。
6)有不知多少人(至少兩人)排成一排,有黑白兩種帽子,每種帽子的數目都比人數少1。
大家可以先不看我下面的分析,試著做做這幾題。
如果按照上面3頂黑帽2頂白帽時的推理方法去做,那麼10個人就可以把我們累死,別說5000個人了。但是3)中的n是個抽象的數,考慮一下怎麼解決這個問題,對解決一般的問題大有好處。
假設現在n個人都已經戴好了帽子,問排在最後的那一個人他頭上的帽子是什麼顏色,什麼時候他會回答「知道」?很顯然,只有在他看見前面n-1個人都戴著白帽時才可能,因為這時所有的n-1頂白帽都已用光,在他自己的腦袋上只能頂著黑帽子,只要前面有一頂黑帽子,那麼他就無法排除自己頭上是黑帽子的可能——即使他看見前面所有人都是黑帽,他還是有可能戴著第n頂黑帽。
現在假設最後那個人的回答是「不知道」,那麼輪到問倒數第二人。根據最後面那位的回答,他能推斷出什麼呢?如果他看見的都是白帽,那麼他立刻可以推斷出自己戴的是黑帽——要是他也戴著白帽,那麼最後那人應該看見一片白帽,問到他時他就該回答「知道」了。但是如果倒數第二人看見前面至少有一頂黑帽,他就無法作出判斷——他有可能戴著白帽,但是他前面的那些黑帽使得最後那人無法回答「知道」;他自然也有可能戴著黑帽。
這樣的推理可以繼續下去,但是我們已經看出了苗頭。最後那個人可以回答「知道」當且僅當他看見的全是白帽,所以他回答「不知道」當且僅當他至少看見了一頂黑帽。這就是所有帽子顏色問題的關鍵!
如果最後一個人回答「不知道」,那麼他至少看見了一頂黑帽,所以如果倒數第二人看見的都是白帽,那麼最後那個人看見的至少一頂黑帽在哪裡呢?不會在別處,只能在倒數第二人自己的頭上。這樣的推理繼續下去,對於隊列中的每一個人來說就成了:
「在我後面的所有人都看見了至少一頂黑帽,否則的話他們就會按照相同的判斷斷定自己戴的是黑帽,所以如果我看見前面的人戴的全是白帽的話,我頭上一定戴著我身後那個人看見的那頂黑帽。」
我們知道最前面的那個人什麼帽子都看不見,就不用說看見黑帽了,所以如果他身後的所有人都回答說「不知道」,那麼按照上面的推理,他可以確定自己戴的是黑帽,因為他身後的人必定看見了一頂黑帽——只能是第一個人他自己頭上的那頂。事實上很明顯,第一個說出自己頭上是什麼顏色帽子的那個人,就是從隊首數起的第一個戴黑帽子的人,也就是那個從隊尾數起第一個看見前面所有人都戴白帽子的人。
這樣的推理也許讓人覺得有點循環論證的味道,因為上面那段推理中包含了「如果別人也使用相同的推理」這樣的意思,在邏輯上這樣的自指式命題有點危險。但是其實這里沒有循環論證,這是類似數學歸納法的推理,每個人的推理都建立在他後面那些人的推理上,而對於最後一個人來說,他的身後沒有人,所以他的推理不依賴於其他人的推理就可以成立,是歸納中的第一個推理。稍微思考一下,我們就可以把上面的論證改得適合於任何多種顏色的推論:
「如果我們可以從假設斷定某種顏色的帽子一定會在隊列中出現,從隊尾數起第一個看不見這種顏色的帽子的人就立刻可以根據和此論證相同的論證來作出判斷,他戴的是這種顏色的帽子。現在所有我身後的人都回答不知道,所以我身後的人也看見了此種顏色的帽子。如果在我前面我見不到此顏色的帽子,那麼一定是我戴著這種顏色的帽子。」
當然第一個人的初始推理相當簡單:「隊列中一定有人戴這種顏色的帽子,現在我看不見前面有人戴這顏色的帽子,那它只能是戴在我的頭上了。」
對於題1)事情就變得很明顯,3頂紅帽子,4頂黑帽子,5頂白帽子給10個人戴,隊列中每種顏色至少都該有一頂,於是從隊尾數起第一個看不見某種顏色的帽子的人就能夠斷定他自己戴著這種顏色的帽子,通過這點我們也可以看到,最多問到從隊首數起的第三人時,就應該有人回答「知道」了,因為從隊首數起的第三人最多隻能看見兩頂帽子,所以最多看見兩種顏色,如果他後面的人都回答「不知道」,那麼他前面一定有兩種顏色的帽子,而他頭上戴的一定是他看不見的那種顏色的帽子。
題2)也一樣,3頂紅帽子,4頂黑帽子,5頂白帽子給8個人戴,那麼隊列中一定至少有一頂白帽子,因為其它顏色加起來一共才7頂,所以隊列中一定會有人回答「知道」。
題4)的規模大了一點,但是道理和2)完全一樣。100種顏色的5050頂帽子給5000人戴,前面99種顏色的帽子數量是1 …… 99=4950,所以隊列中一定有第100種顏色的帽子(至少有50頂),所以如果自己身後的人都回答「不知道」,那麼那個看不見顏色100帽子的人就可以斷定自己戴著這種顏色的帽子。
至於5)、6)「有紅黃綠三種顏色的帽子各1頂2頂3頂,但具體不知道哪種顏色是幾頂,有6個人」以及「有不知多少人排成一排,有黑白兩種帽子,每種帽子的數目都比人數少1」,原理完全相同,我就不具體分析了。
最後要指出的一點是,上面我們只是論證了,如果我們可以根據各種顏色帽子的數量和隊列中的人數判斷出在隊列中至少有一頂某種顏色的帽子,那麼一定有一人可以判斷出自己頭上的帽子的顏色。因為如果所有身後的人都回答「不知道」的話,那個從隊尾數起第一個看不見這種顏色的帽子的人就可以判斷自己戴了此顏色的帽子。但是這並不是說在詢問中一定是由他來回答「知道」的,因為還可能有其他的方法來判斷自己頭上帽子的顏色。比如說在題2)中,如果隊列如下:(箭頭表示隊列中人臉朝的方向)
白白黑黑黑黑紅紅紅白→
那麼在隊尾第一人就立刻可以回答他頭上的是白帽,因為他看見了所有的3頂紅帽子和4頂黑帽子,能留給他自己戴的只能是白帽子了

與階梯猜帽子顏色的智力題相關的資料

熱點內容
yyvp什麼意思什麼馬甲 瀏覽:243
穿什麼樣的睡衣才能吸引丈夫 瀏覽:229
褲子縫扣子 瀏覽:507
棉衣羽絨服臟了怎麼洗 瀏覽:260
柯橋旗袍店 瀏覽:554
杜嘉班納衣女多少錢 瀏覽:827
襯衫洗過皺了怎麼辦 瀏覽:750
三星白戰隊帽子 瀏覽:950
香檳色外套搭配 瀏覽:60
女式針織羊外套中長款馬甲 瀏覽:841
買帽子商家 瀏覽:795
牛仔褲上的百合花粉怎麼去除 瀏覽:449
男白色連帽衛衣搭配圖片男 瀏覽:148
深藍色的衣配什麼樣的領子好看 瀏覽:909
廣州優惑品牌女裝批發 瀏覽:155
春款女裝適合賣什麼名字 瀏覽:711
蒙口羽絨服批發廠家 瀏覽:222
黑色羽絨服前短後長怎麼搭配 瀏覽:418
為什麼剛買的褲子洗第一遍那麼臟 瀏覽:138
什麼褲配牛仔外套好看嗎 瀏覽:48